X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho đường tròn (O) đường kính AB, E thuộc đoạn AO (E khác A, O và AE


Câu hỏi:

Cho đường tròn (O) đường kính AB, E thuộc đoạn AO (E khác A, O và AE > EO). Gọi H là trung điểm của AE , kẻ dây CD vuông góc với AE tại H.

a) Tính góc ACB ?

b) Tứ giác ACED là hình gì ?

c) Gọi I là giao điểm của DE và BC . Chứng minh HI là tiếp tuyến của đường tròn đường kính EB ?

Trả lời:

Cho đường tròn (O) đường kính AB, E thuộc đoạn AO (E khác A, O và AE (ảnh 1)

a) Vì \(\widehat {ACB}\)là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ACB} = 90^\circ \)

b) Xét (O) có 

OH là một phần đường kính

CD là dây

OH CD tại H

Do đó: H là trung điểm của CD

Xét tứ giác ECAD có 

H là trung điểm của đường chéo CD

H là trung điểm của đường chéo EA

Do đó: ECAD là hình bình hành

Mà EA CD

Nên ECAD là hình thoi

c) ACED là hình thoi nên DE //AC

Mà AC BC nên DE BC

Suy ra: DI BC

\(\widehat {EIB} = 90^\circ \)\(\widehat {CID} = 90^\circ \)

Xét tam giác CID vuông tại I có IH là trung tuyến

IH = \(\frac{1}{2}CD = DH\)

∆DHI cân tại H \(\widehat {HID} = \widehat {EBI}\)

Gọi M là trung điểm BE

Suy ra: IM là trung tuyến của ∆IBE vuông tại I.

IM = \(\frac{1}{2}BE = BM\)

∆MBI cân tại M

\(\widehat {MBI} = \widehat {MIB} = \widehat {EBI} = \widehat {HID}\)

Ta có: \(90^\circ = \widehat {EIB} = \widehat {BIM} + \widehat {EIM} = \widehat {HID} + \widehat {EIM} = \widehat {HIM}\)

Suy ra: HI IM tại I

Vì IM = EM = BM = \(\frac{1}{2}BE\) và HI IM nên HI là tiếp tuyến của \(\left( {M;\frac{{EB}}{2}} \right)\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho (O) đường kính AC . trên đoạn OC lấy điểm B và vẽ đường tròn tâm O', đường kính BC. Gọi M là trung điểm của đoạn AB . Từ M vẽ dây cung DE vuông góc với AB, DC cắt đường tròn tâm O' tại I.

1. Tứ giác ADBE là hình gì?

2. Chứng minh DMBI nội tiếp.

3. Chứng minh B, I ,E Thẳng hàng và MI = MD.

4. Chứng minh MC.DB = MI.DC.

5. Chứng minh MI là tiếp tuyến của (O').

Xem lời giải »


Câu 6:

Trong hệ tọa độ Oxy, cho tam giác ABC có M(2; 3);  N(0; –4); P(–1; 6) lần lượt là trung điểm của các cạnh BC; CA; AB. Tìm tọa độ đỉnh A?

Xem lời giải »


Câu 7:

Dấu hiệu nhận biết tam giác vuông cân.

Xem lời giải »


Câu 8:

Cho hàm số Y = f(x) = 2004x.

a) Chứng minh f(a + b) = f(a) + f(b).

b) Tìm x để f(x) = x2.

Xem lời giải »