Cho đường tròn (O). Gọi I là điểm chính giữa dây cung AB (Không phải là cung nửa
Câu hỏi:
Cho đường tròn (O). Gọi I là điểm chính giữa dây cung AB (Không phải là cung nửa đường tròn) và H là trung điểm của dây AB. Chứng minh rằng đường thẳng IH đi qua tâm O của đường tròn.
Trả lời:
Ta có: (gt)
Þ IA = IB (2 cung bằng nhau căng 2 dây bằng nhau)
Suy ra I nằm trên đường trung trực của AB
Do OA = OB (bán kính (O))
Suy ra O nằm trên đường trung trực của AB
Do đó OI là đường trung trực của AB
H là trung điểm của AB, do đó OI đi qua trung điểm H
Vậy 3 điểm I, H, O thẳng hàng.