X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì đi qua trung


Câu hỏi:

Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy. Mệnh đề đảo có đúng không? Hãy nêu thêm điều kiện để mệnh đề đảo đúng.

Trả lời:

Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì đi qua trung  (ảnh 1)

Mệnh đề: Đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy.

Chứng minh:

Gọi M là điểm chính giữa của cung nhỏ AB và MN là đường kính.

Do M là điểm chính giữa của cung nhỏ AB nên ta có:

Mà dây MA chắn cung nhỏ AM, dây MB chắn cung nhỏ MB nên MA = MB (1)

Ta lại có: OA = OB (2) (cùng bằng bán kính đường tròn tâm O)

Từ (1) và (2) ta suy ra OM là đường trung trực của AB

Hay MN là đường trung trực của AB

Do đó, MN đi qua trung điểm của AB (đpcm)

Mệnh đề đảo: Đường kính đi qua trung điểm của dây thì đi qua điểm chính giữa của cung căng dây đó.

Chứng minh:

Giả sử đường kính MN đi qua trung điểm H của dây AB

Xét tam giác OAB có:

OA = OB (cùng bằng bán kính đường tròn tâm O)

Do đó, tam giác OAB cân tại O

Có: H là trung điểm của AB

Do đó, OH là đường trung tuyến và cũng là đường phân giác của góc AOB

\( \Rightarrow \widehat {AOH} = \widehat {BOH} \Rightarrow \widehat {AOM} = \widehat {BOM}\)

Mà ta có:

Góc AOM chắn cung nhỏ AM

Góc BOM chắn cung nhỏ BM

 sdAM=sdMBAM=MB

Do đó, M là điểm chính giữa của cung nhỏ AB (đpcm)

Điều này chỉ đúng khi dây AB không đi qua O

Vậy phải thêm điều kiện để mệnh đề đảo đúng là: Đường kính đi qua trung điểm của một dây không đi qua tâm thì đi qua điểm chính giữa của cung căng dây đó.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ  số 2 đứng liền giữa hai chữ số 1 và 3?

Xem lời giải »


Câu 2:

Có bao nhiêu số tự nhiên gồm 7 chữ số thỏa mãn số đó có 3 số chữ chẵn và số đứng sau lớn hơn số đứng trước?

Xem lời giải »


Câu 3:

Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f (x) = −x2 − 4x + 3 trên đoạn [0; 4].

Xem lời giải »


Câu 4:

Tìm giá trị lớn nhất M của hàm số y = x4 − 2x2 + 3 trên đoạn \(\left[ {0;\;\sqrt 3 } \right]\).

Xem lời giải »


Câu 5:

Chứng minh rằng đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại.

Xem lời giải »


Câu 6:

Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng:

\(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \)

Xem lời giải »


Câu 7:

Cho hàm số \(f\left( x \right) = \frac{{ax + 1}}{{bx + c}}\;\left( {a,\;b,\;c \in \mathbb{R}} \right)\) có bảng biến thiên như sau:

Cho hàm số f(x) = (ax + 1) / (bx + c) (a, b, c thuộc R) có bẳng biến thiên như sau (ảnh 1)

Trong các số a, b và c có bao nhiêu số dương?

Xem lời giải »


Câu 8:

Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm ở trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai? 

Xem lời giải »