X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho đường tròn (O; R), đường kính AB. Trên đường tròn (O) lấy điểm D sao cho


Câu hỏi:

Cho đường tròn (O; R), đường kính AB. Trên đường tròn (O) lấy điểm D sao cho AD > BD, D khác A và B. Kẻ OH vuông góc với AD tại H, tia OH cắt tiếp tuyến Ax của đường tròn (O) tại C.

a) Chứng minh H là trung điểm của AD và OH.OC = R².

b) Gọi E là giao điểm của BC và đưởng tròn (O). Chứng minh bốn điểm A, H, E, C cùng thuộc một đường tròn và CD là tiếp tuyến của đường tròn (O).

Trả lời:

Cho đường tròn (O; R), đường kính AB. Trên đường tròn (O) lấy điểm D sao cho  (ảnh 1)

a) Ta có OA = OD = R

ΔAOD cân tại O

Vì OH AD tại H (gt)

OH vừa là đường cao, trung tuyến và phân giác của ΔAOD

H là trung điểm AD

Áp dụng hệ thức lượng trong ΔACO vuông tại A có AH OC

OH.OC = OA2 = R2

Vậy H là trung điểm AD và OH.OC = R2
b) ΔEAB nội tiếp (O;R) có AB là đường kính 

ΔEAB vuông tại E

AE BC tại E

ΔACE vuông tại E

Gọi I là trung điểm AC

EI là trung tuyến ΔACE

EI = AI = CI = \(\frac{1}{2}\)AC

    HI là trung tuyến ΔACH vuông tại H

HI = \(\frac{1}{2}\)AC

AI = HI = EI = CI = \(\frac{1}{2}\)AC

A; H; E; C cùng thuộc đường tròn tâm I đường kính AC

Vì OH là phân giác của ΔAOD (câu a)

\(\widehat {DOC} = \widehat {AOC}\)

Xét ΔDOC và ΔAOC có:

OC là cạnh chung 

\(\widehat {DOC} = \widehat {AOC}\)

OD = OA = R    

ΔDOC = ΔAOC (c–g–c)

\(\widehat {CDO} = \widehat {CAO}\)= 90°

CD OD

CD là tiếp tuyến tại D của (O).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Giải phương trình: \[\sqrt {2{x^2} + 11x + 19} + \sqrt {2{x^2} + 5x + 7} = 3\left( {x + 2} \right)\].

Xem lời giải »


Câu 6:

Tìm điều kiện xác định của biểu thức \[\frac{{\sqrt x }}{{\sqrt x - 1}}\].

Xem lời giải »


Câu 7:

Tìm GTNN của \(\left| {x - 2022} \right| + \left| {2023 - x} \right|\).

Xem lời giải »


Câu 8:

Gọi A là tập hợp tất cả các số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc A. Tính xác suất để số tự nhiên được chọn chia hết cho 25.

Xem lời giải »