X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y = f(x) có bảng biến thiên như sau Số nghiệm thực của phương trình 2f(x) + 5 = 0


Câu hỏi:

Cho hàm số y = f(x) có bảng biến thiên như sau:

Cho hàm số y = f(x) có bảng biến thiên như sau Số nghiệm thực của phương trình 2f(x) + 5 = 0 (ảnh 1)

Số nghiệm thực của phương trình 2f(x) + 5 = 0 là:

A. 3;

B. 4;

C. 2;

D. 1.

Trả lời:

Đáp án đúng là: C

Số nghiệm của phương trình 2f(x) + 5 = 0 \( \Leftrightarrow f(x) = - \frac{5}{2}\) là số giao điểm của đường thẳng \(y = - \frac{5}{2}\) và đồ thị hàm số y = f(x)

Ta có BBT:

Cho hàm số y = f(x) có bảng biến thiên như sau Số nghiệm thực của phương trình 2f(x) + 5 = 0 (ảnh 2)

Dựa vào BBT ta thấy đường thẳng \(y = - \frac{5}{2}\) cắt đồ thị hàm số y = f(x) tại hai điểm phân biệt.

Do đó 2f(x) + 5 = 0 có hai nghiệm phân biệt.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông tại A. E là trung điểm của B’C’, CB’ cắt BE tại M. Tính thể tích V của khối tứ diện ABCM biết AB = 3a, AA’ = 6a.

Xem lời giải »


Câu 2:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B, biết BA = BC = 2a và (A’BC) hợp với đáy một góc 30°. Tính thể tích khối lăng trụ ABC.A’B’C’ là:

Xem lời giải »


Câu 3:

Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và \(\widehat {ABC} = 120^\circ \). Các cạnh AA', A'B, A'D cùng tạo với đáy một góc 60°. Tính theo a thể tích V của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Quãng đường AB gồm một đoạn lên dốc dài 4 km và một đoạn xuống dốc dài 5 km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc.

Xem lời giải »


Câu 5:

Tổng các nghiệm của phương trình 4x – 3.2x+2 + 32 = 0 bằng

Xem lời giải »


Câu 6:

Tập nghiệm của bất phương trình 4x – 3.2x+2 + 32 ≤ 0 là:

Xem lời giải »


Câu 7:

Chọn mệnh đề sai trong các mệnh đề dưới đây:

Xem lời giải »


Câu 8:

Giải bất phương trình sau: \({\log _{\frac{1}{2}}}\left( {{4^x} + 4} \right) \ge {\log _{\frac{1}{2}}}\left( {{2^{2x + 1}} - {{3.2}^x}} \right)\).

Xem lời giải »