X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Chọn mệnh đề sai trong các mệnh đề dưới đây: A. Tồn tại khối lăng trụ đều


Câu hỏi:

Chọn mệnh đề sai trong các mệnh đề dưới đây:

A. Tồn tại khối lăng trụ đều là khối đa diện đều;

B. Tồn tại khối chóp tứ giác đều là khối đa diện đều;

C. Tồn tại khối tứ diện là khối đa diện đều;

D. Tồn tại khối hộp là khối đa diện đều.

Trả lời:

Đáp án đúng là: B

Không thể tồn tại khối chóp tứ giác đều là khối đa diện đều.

Vậy mệnh đề sai là mệnh đề B.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông tại A. E là trung điểm của B’C’, CB’ cắt BE tại M. Tính thể tích V của khối tứ diện ABCM biết AB = 3a, AA’ = 6a.

Xem lời giải »


Câu 2:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B, biết BA = BC = 2a và (A’BC) hợp với đáy một góc 30°. Tính thể tích khối lăng trụ ABC.A’B’C’ là:

Xem lời giải »


Câu 3:

Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và \(\widehat {ABC} = 120^\circ \). Các cạnh AA', A'B, A'D cùng tạo với đáy một góc 60°. Tính theo a thể tích V của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Quãng đường AB gồm một đoạn lên dốc dài 4 km và một đoạn xuống dốc dài 5 km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc.

Xem lời giải »


Câu 5:

Giải bất phương trình sau: \({\log _{\frac{1}{2}}}\left( {{4^x} + 4} \right) \ge {\log _{\frac{1}{2}}}\left( {{2^{2x + 1}} - {{3.2}^x}} \right)\).

Xem lời giải »


Câu 6:

Phương trình 5x + 251-x = 6 có tích các nghiệm là:

Xem lời giải »


Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với \(AB = 2a\sqrt 3 \); BC = 2a. Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm đoạn DI và SB hợp với mặt phẳng đáy (ABCD) một góc 60°. Khoảng cách từ D đến (SBC) tính theo a bằng

Xem lời giải »


Câu 8:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng

Xem lời giải »