X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ. Đặt g(x) = 3f(x) - x^3


Câu hỏi:

Cho hàm số y=f(x). Đồ thị hàm số y=f'(x) như hình vẽ

Đặt gx=3fxx3+3xm, với m là tham số thực. Điều kiện cần và đủ để bất phương trình gx0 đúng với x3;3 là:

A. m3f3

B. m3f0

C. m3f1

D. m3f3

Trả lời:

Đáp án A

gx03fxx3+3xm03fxx3+3xm

Đặt hx=3fxx3+3x. Ta có: h'x=3f'x3x2+3

Suy ra:

h'3=3f'36=0h'3=3f'36=0h'0=3f'0+3=0h'±1=3f'±1<0

Từ đó ta có BBT:

Vậy hxmmh3=3f3

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=x42mx2+2m4 đi qua điểm N(2;0)

Xem lời giải »


Câu 2:

Có bao nhiêu giá trị nguyên của tham số m để đường thẳng y=mx4 cắt đồ thị của hàm số y=x21x29 tại bốn điểm phân biệt?

Xem lời giải »


Câu 3:

Hàm số y=x+m3+x+n3x3 (tham số m, n) đồng biến trên khoảng ;+. Giá trị nhỏ nhất của biểu thức P=4m2+n2mn bằng:

Xem lời giải »


Câu 4:

Hình vẽ bên là đồ thị của hàm số y = f(x)

Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y=fx1+m có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng:

Xem lời giải »