Cho hàm số y = (mx - 2m - 3) / (x - m) vói m là tham số. Gọi S là tập hợp tất cả các
Câu hỏi:
Cho hàm số \[y = \frac{{mx - 2m - 3}}{{x - m}}\] với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên khoảng (2; +∞). Tìm số phần tử của S.
Trả lời:
Ta có: \[y' = \frac{{ - {m^2} + 2m + 3}}{{{{(x - m)}^2}}}\]
Hàm số đồng biến trên:
(2; +¥) Û y’ > 0, " x Î (2; +¥)
\[ \Rightarrow \left\{ \begin{array}{l} - {m^2} + 2m + 3 > 0\\x \ne m \in (2; + \infty )\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 3\\m \le 2\end{array} \right.\]
\[ \Rightarrow - 1 < m \le 2\]
Þ m Î {0; 1; 2}
Vậy S có 3 phần tử.