X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y=x^3-3x^2+4 có đồ thị (C). Gọi d là đường thẳng qua I(1; 2) với hệ số góc k


Câu hỏi:

Cho hàm số  y=x3-3x2+4 có đồ thị (C) . Gọi d  là đường thẳng qua  I(1; 2) với hệ số góc k . Có bao nhiêu   giá trị nguyên của k  để d  cắt (C)  tại ba điểm phân biệt I, A, B sao cho I  là trung điểm của đoạn thẳng  AB

A. 4

B. 1

C.  6

D. vô số

Trả lời:

Phương trình đường thẳng d: y = k(x - 1) + 2.

Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d:

x3 - 3x2 + 4 =  k(x - 1) + 2.

Hay x3 - 3x2 - kx + k + 2 = 0 (1) 

(x-1)(x2-2x-k-2)=0

( C) cắt d tại ba điểm phân biệt khi  và chỉ khi phương trình (*) có hai nghiệm phân biệt x1; x2 khác 1

'g>0g(1)0k+3>0-3-k0k>-3

Hơn nữa  theo Viet ta có 

x1+x2=2=2xIy1+y2=k(x1+x2)-2k+4=4=2yI

nên I là trung điểm AB.

Vậy chọn k > -3, hay k ∈ (-3; +). Do đó có vô số giá trị k nguyên thỏa mãn yêu cầu bài toán.

Chọn D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tất các giá trị thực của tham số m  để hàm số y=13x3+(m+3)x2+4(m+3)x+m3-m đạt cực trị tại x1,x2 thỏa mãn -2<x1<x2

Xem lời giải »


Câu 2:

Tìm các giá trị của tham số m để hàm số: y=13mx3-(m-1)x2+3m-2x+16

đạt cực trị tại x1<x2 tha mãn 4x1+3x2=3

Xem lời giải »


Câu 3:

Cho hàm số y= f(x) =ax3+ bx2+cx+d  có đạo hàm là hàm số y= f’ (x)  với đồ thị như hình vẽ bên. Biết rằng đồ thị hàm số y= f( x)  tiếp xúc với trục hoành tại điểm có hoành độ dương . Khi đó đồ thị hàm số y= f( x)  cắt trục tung tại điểm có tung độ là bao nhiêu?

Xem lời giải »


Câu 4:

Giá trị lớn nhất của hàm số y=x+4+4-x-4x+44-x+5  bằng

Xem lời giải »