Cho hàm số y=x^3-3x^2+4 có đồ thị (C). Gọi d là đường thẳng qua I(1; 2) với hệ số góc k
Câu hỏi:
Cho hàm số y=x3-3x2+4 có đồ thị (C) . Gọi d là đường thẳng qua I(1; 2) với hệ số góc k . Có bao nhiêu giá trị nguyên của k để d cắt (C) tại ba điểm phân biệt I, A, B sao cho I là trung điểm của đoạn thẳng AB là
A. 4
B. 1
C. 6
D. vô số
Trả lời:
Phương trình đường thẳng d: y = k(x - 1) + 2.
Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d:
x3 - 3x2 + 4 = k(x - 1) + 2.
Hay x3 - 3x2 - kx + k + 2 = 0 (1)
( C) cắt d tại ba điểm phân biệt khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x1; x2 khác 1
Hơn nữa theo Viet ta có
nên I là trung điểm AB.
Vậy chọn k > -3, hay k ∈ (-3; +∞). Do đó có vô số giá trị k nguyên thỏa mãn yêu cầu bài toán.
Chọn D.