X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y= f(x) =ax^3+ bx^2+cx+d có đạo hàm là hàm số y= f’ (x) với đồ thị như hình vẽ


Câu hỏi:

Cho hàm số y= f(x) =ax3+ bx2+cx+d  có đạo hàm là hàm số y= f’ (x)  với đồ thị như hình vẽ bên. Biết rằng đồ thị hàm số y= f( x)  tiếp xúc với trục hoành tại điểm có hoành độ dương . Khi đó đồ thị hàm số y= f( x)  cắt trục tung tại điểm có tung độ là bao nhiêu?

A. 2/3

B. 1

C. 3/2

D. 4/3

Trả lời:

+ Ta có đạo hàm f’(x) = 3ax2+ 2bx+c .

+ Dựa vào đồ thị hàm số y = f’(x) ta thấy đồ thị hàm số  đi qua các điểm (0; 0); (1; -1); (2; 0) nên  a = 1/3; b = -1; c = 0.

Do vậy hàm số cần tìm có dạng y = 1/3 x3-x2+ d  .

 Điểm tiếp xúc với trục hoành là cực trị của đồ thị hàm số và tại đó ta có x = 0 hoặc x = 2.

+ Vì đồ thị hàm số y = f(x)  tiếp xúc với trục hoành tại điểm có hoành độ dương nên đồ thị hàm số tiếp xúc trục hoành tại điểm  x = 2 nghĩa là:

 f(2) = 0 hay  8/3 - 4 + d= 0  nên d = 4/3

Chọn D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tất các giá trị thực của tham số m  để hàm số y=13x3+(m+3)x2+4(m+3)x+m3-m đạt cực trị tại x1,x2 thỏa mãn -2<x1<x2

Xem lời giải »


Câu 2:

Tìm các giá trị của tham số m để hàm số: y=13mx3-(m-1)x2+3m-2x+16

đạt cực trị tại x1<x2 tha mãn 4x1+3x2=3

Xem lời giải »


Câu 3:

Giá trị lớn nhất của hàm số y=x+4+4-x-4x+44-x+5  bằng

Xem lời giải »


Câu 4:

Cho hàm số y= 2x3-3x2+1  có đồ thị và đường thẳng  d: y=x-1. Giao điểm của (C)  và d  lần lượt là A( 1; 0); B và C. Khi đó khoảng cách giữa B và C  là

Xem lời giải »


Câu 5:

Giá trị nhỏ nhất của hàm số y= 2sin4x+ cos2x+ 3  bằng

Xem lời giải »


Câu 6:

Gọi Mgiá trị lớn nhất và m là giá trị nhỏ nhất của hàm số y= 2sin8 x+ cos42x. Khi đó M + m bằng

Xem lời giải »