X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y=f(x) xác định trên R \ {0}, liên tục trên mỗi khoảng xác định và có


Câu hỏi:

Cho hàm số y=f(x) xác định trên \{0}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Cho hàm số y=f(x) xác định trên R \ {0}, liên tục trên mỗi khoảng xác định và có (ảnh 1)

Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = m có ba nghiệm thực phân biệt.

Trả lời:

Dựa vào bảng biến thiên đã cho, phương trình f(x) = m có ba nghiệm phân biệt khi và chỉ khi −1 < m < 2 hay m (−1; 2) vì lúc đó, đường thẳng y = m cắt đồ thị hàm số y = f(x) tại ba điểm phân biệt.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Tìm số điểm biểu diễn các nghiệm của phương trình \[\sin \left( {2x + \frac{\pi }{3}} \right) = \frac{1}{2}\]trên đường tròn lượng giác.

Xem lời giải »


Câu 6:

Cho hàm số \[y = \frac{{mx - 2m - 3}}{{x - m}}\]   với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên khoảng (2; +∞). Tìm số phần tử của S.

Xem lời giải »


Câu 7:

Tìm tất cả các giá trị của tham số m để hàm số \[y = {\log _{2020}}(mx - m + 2)\]xác định trên \[[1; + \infty )\].

Xem lời giải »


Câu 8:

Tính tích tất cả các nghiệm của phương trình \[\log _3^2x - 2{\log _3}x - 7 = 0\].

Xem lời giải »