X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc (ABC) góc giữa


Câu hỏi:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA (ABC) góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai đường thẳng AC và SB.

Trả lời:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc (ABC) góc giữa (ảnh 1)

SA (ABC) nên AB là hình chiếu của SB lên (ABC)

\[ \Rightarrow \widehat {(SB,(ABC))} = \widehat {(SB,AB)} = \widehat {SBA} = 60^\circ \]

\[ \Rightarrow SA = AB.\tan 60^\circ = a\sqrt 3 \]

Dựng d qua B và d // AC

Dựng AK d tại K

Dựng AH SK tại H

Ta có: BK AK và BK SA nên BK (SAK)

Þ BK AH

Mà SK AH

Þ AH (SBK)

Lại có: BK // AC; SK Ì (SBK); AC Ë (SBK)

Suy ra AC // (SBK)

Þ d(AC, SB) = d(A, (SBK)) = AH

Gọi M là trung điểm của AC suy ra BM AC

Mà BK AK và BK // AC nên AK AC

Do đó AKBM là hình bình hành

\[ \Rightarrow AK = BM = \frac{{a\sqrt 3 }}{2}\]

Xét tam giác SAK vuông tại A ta có:

\[\frac{1}{{A{H^2}}} = \frac{1}{{A{K^2}}} + \frac{1}{{S{A^2}}} = \frac{5}{{3{a^2}}}\]

 \[AH = \frac{{a\sqrt {15} }}{5}\]

Vậy \[d(AC,SB) = \frac{{a\sqrt {15} }}{5}\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Cho hình chóp S.ABCD có đáy là hình bình hành. Tìm giao tuyến của (SAB)  và (SCD).

Xem lời giải »


Câu 6:

Tìm tập xác định D của hàm số y = log2 (x2 + 5x − 6).

Xem lời giải »


Câu 7:

Tìm tập xác định D của hàm số y = log2(x3 − 8)1000 .

Xem lời giải »


Câu 8:

Cho hàm số y=f(x) xác định trên \{0}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Cho hàm số y=f(x) xác định trên R \ {0}, liên tục trên mỗi khoảng xác định và có (ảnh 1)

Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = m có ba nghiệm thực phân biệt.

Xem lời giải »