Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết
Câu hỏi:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết SA ⊥ (ABC) và SB với đáy một góc 60. Thể tích khối chóp S.ABC là
A. \(V = \frac{{{a^3}\sqrt 6 }}{{24}}\);
B. \(V = \frac{{{a^3}\sqrt 3 }}{{24}}\);
C. \(V = \frac{{{a^3}\sqrt 6 }}{8}\);
D. \(V = \frac{{{a^3}\sqrt 6 }}{{48}}\).
Trả lời:
Đáp án đúng là: A.
Vì SA vuông góc với (ABC)
⇒ A là hình chiếu của S trên (ABC)
⇒ AB là hình chiếu của SB trên (ABC)
⇒ (SB, (ABC)) = (SB, AB) \( = \widehat {SBA} = 60^\circ \)
Tam giác vuông cân ABC tại B
⇒ \(AB = BC = AC.\sin 45^\circ = AC.\frac{{\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}\)
Tam giác SAB vuông tại A
\( \Rightarrow SA = AB.\tan \widehat {SBA} = \frac{{a\sqrt 2 }}{2}.\tan 60^\circ = \frac{{a\sqrt 6 }}{2}\)
Thể tích khối chóp S.ABC là:
\(V = \frac{1}{3}.{S_{ABC}}.SA = \frac{1}{3}.\left( {\frac{1}{2}.\frac{{a\sqrt 2 }}{2}.\frac{{a\sqrt 2 }}{2}} \right).\frac{{a\sqrt 6 }}{2} = \frac{{{a^3}\sqrt 6 }}{{24}}\).