X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P


Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, SD, OC.

a) Tìm Tìm giao tuyến của mặt phẳng (MNP) với mp (SAC).

b) Tìm giao điểm của SA với mp (MNP).

c) Tìm thiết diện của S.ABCD với (AMN).

Trả lời:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P  (ảnh 1)

a) P (MNP) (SAC)

SO và MN (SBD) SO cắt được MN

Gọi MN SO = I

I (MNP) (SAC)

(MNP) (SAC) = PI

b) Gán SA (SAC)

Mà (SAC) (MNP) = PI

SA (MNP) = SA PI = J

c) AI, SC (SAC) AI cắt được SC

Gọi AI SC = E

(AMN) (SAB) = AM

(AMN) (SBC) = ME

(AMN) (SCD) = EN

(AMN) (SAD) = AN

 Thiết diện là tứ diện AMEN.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–1; 2); B(3; 2); C(1; 5). Tính tọa độ trọng tâm của tam giác ABC?

Xem lời giải »


Câu 2:

Trong mặt phẳng Oxy cho các điểm A(–1; 2); B(5; 8) điểm M thuộc Ox sao cho tam giác MAB vuông tại A. Tính diện tích tam giác MAB?

Xem lời giải »


Câu 3:

Cho các số x, y, z dương thoả mãn x2 + y2 + z2 = 1. Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{1}{{16{x^2}}} + \frac{1}{{4{y^2}}} + \frac{1}{{{z^2}}}\).

Xem lời giải »


Câu 4:

Tìm số lớn nhất có 4 chữ số khác nhau, chữ số hàng trăm là chữ số 5. Số này phải chia hết cho 2 và chia hết cho 5.

Xem lời giải »


Câu 5:

Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.

a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.

b) Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau. Suy ra AB.AC = 2R.AD.

c) Chứng minh OC vuông góc với DE.

Xem lời giải »


Câu 6:

Cho tam giác ABC có \(\widehat {ACB} = \widehat {ABC}\) và có đường phân giác AD

a) \(\widehat {ADB},\widehat {ADC}\)là góc ngoài của những tam giác nào? Chứng minh \(\widehat {ADB} = \widehat {ADC}\).

b) Chứng minh AB = AC.

Xem lời giải »


Câu 7:

Cho ∆ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng với A qua M. trên tia đối của tia HA lấy điểm E sao cho HE = HA.

a) Chứng minh HM // ED và HM =\(\frac{1}{2}\)DE.

b) Chứng minh ABDC là hình chữ nhật.

c) Gọi P, Q lần lượt là hình chiếu của E lên BD và CD, EP cắt AD tại K. Chứng minh DE = DK.

d) Chứng minh 3 điểm H, P, Q thẳng hàng.

Xem lời giải »


Câu 8:

Cho tam giác ABC vuông tại C. Gọi D là trung điểm của AB. Kẻ DM vuông góc với AC (M thuộc AC). Gọi E là điểm đối xứng với D qua BC, DE cắt BC tại N.

a) Chứng minh tứ giác CMDN là hình chữ nhật.

b) Tứ giác BDCE là hình gì? Vì sao?

c) Chứng minh: SABC= 2 SCMDN.

d) Tam giác ABC cần có thêm điều kiện gì để tứ giác ABEC là hình thang cân?

Xem lời giải »