X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác (M ∈ BC), trên cạnh AC lấy điểm N sao cho AB = AN. a) Chứng minh ∆ABM = ∆ANM. b) Chứng minh góc BAC = góc CMN


Câu hỏi:

Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác (M BC), trên cạnh AC lấy điểm N sao cho AB = AN.

a) Chứng minh ∆ABM = ∆ANM.

b) Chứng minh \(\widehat {BAC} = \widehat {CMN}\).

Trả lời:

Lời giải

Media VietJack

a) Vì AM là tia phân giác của \(\widehat {BAC}\)

Nên \(\widehat {BAM} = \widehat {CAM}\)

Xét ΔABM và ΔANM có:

AB = AN (giả thiết)

\(\widehat {BAM} = \widehat {CAM}\)

AM là cạnh chung chung

Suy ra ΔABM = ΔANM (c.g.c)

b) Vì ΔABM = ΔANM (chứng minh câu a)

Nên \(\widehat {ABM} = \widehat {ANM}\) (hai góc tương ứng)

\(\widehat {ABM} = 90^\circ \)

Suy ra \(\widehat {ANM} = 90^\circ \)

Hay tam giác CMN vuông tại N

Suy ra \(\widehat {NCM} + \widehat {NMC} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

\(\widehat {NCM} + \widehat {BAC} = 90^\circ \) (vì tam giác ABC vuông tại C)

Do đó \(\widehat {BAC} = \widehat {CMN}\)

Vậy \(\widehat {BAC} = \widehat {CMN}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.

Xem lời giải »


Câu 2:

Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \[{\rm{A}}M = \frac{{AC}}{4}\]. Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).

Xem lời giải »


Câu 3:

Cho hình vuông ABCD có cạnh bằng 2. Tính \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right|\).

Xem lời giải »


Câu 4:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.

a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Giả sử BC = 2a. Tính BM . CN.

d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem lời giải »


Câu 5:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \). Điểm M di động nằm trên BC sao cho \(\overrightarrow {BM} = x\overrightarrow {BC} \). Tìm x sao cho độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 6:

Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3 đỉnh đó là 3 đỉnh của một tam giác vuông không cân.

Xem lời giải »


Câu 7:

Cho đường tròn (O; R) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC. Lấy D đối xứng với B qua O. Gọi E là giao điểm của đoạn thẳng AD với (O) (E không trùng với D). Chọn câu đúng nhất:

Xem lời giải »


Câu 8:

Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, mỗi chữ số khác có mặt đúng 1 lần

Xem lời giải »