X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm AB, K là điểm đối xứng với H qua điểm I. a) Tứ giác ACHI là hình gì ? Vì sao? b) Tứ giác AHBK là hình gì ? Vì sao? c) Nếu tam


Câu hỏi:

Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm AB, K là điểm đối xứng với H qua điểm I.

a) Tứ giác ACHI là hình gì ? Vì sao?

b) Tứ giác AHBK là hình gì ? Vì sao?

c) Nếu tam giác ABC đều thì ACHI là hình gì?

d) Tam giác ABC có điều kiện gì thì AHBK là hình vuông.

Trả lời:

Lời giải

Media VietJack

a) Xét tam giác ABH vuông tại H có HI là trung tuyến ứng với cạnh huyền

Suy ra \(HI = \frac{1}{2}AB\)

\(AI = BI = \frac{1}{2}AB\)

Do đó BI = IH

Hay tam giác IBH cân tại I

Suy ra \(\widehat {IBH} = \widehat {IHB}\)

\(\widehat {IBH} = \widehat {ACB}\) (vì tam giác ABC cân tại A)

Do đó \(\widehat {ACB} = \widehat {IHB}\)

Lại có hai góc này ở vị trí đồng vị

Suy ra IH // AC

Do đó IHCA là hình thang

b) Xét tứ giác AHBK có

I là trung điểm của AB và HK

AB và HK là hai đường chéo

Suy ra AHBK là hình bình hành

\(\widehat {AHB} = 90^\circ \)

Suy ra AHBK là hình chữ nhật

c) Nếu tam giác ABC đều thì AB = AC = BC, \(\widehat {ABC} = \widehat {ACB} = \widehat {BAC}\)

Suy ra HIAC là hình thang cân

d) Để hình chữ nhật AHBK là hình vuông

AH = BH

\( \Leftrightarrow AH = \frac{1}{2}BC\)

\( \Leftrightarrow \widehat {BAC} = 90^\circ \)

Tam giác ABC vuông cân tại A

Vậy tam giác ABC vuông cân thì AHBK là hình vuông.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.

Xem lời giải »


Câu 2:

Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \[{\rm{A}}M = \frac{{AC}}{4}\]. Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).

Xem lời giải »


Câu 3:

Cho hình vuông ABCD có cạnh bằng 2. Tính \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right|\).

Xem lời giải »


Câu 4:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.

a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Giả sử BC = 2a. Tính BM . CN.

d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem lời giải »


Câu 5:

Cho tam giác ABC vuông tại B (AB < AC) có AM là tia phân giác (M BC), trên cạnh AC lấy điểm N sao cho AB = AN.

a) Chứng minh ∆ABM = ∆ANM.

b) Chứng minh \(\widehat {BAC} = \widehat {CMN}\).

Xem lời giải »


Câu 6:

Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \). Điểm M di động nằm trên BC sao cho \(\overrightarrow {BM} = x\overrightarrow {BC} \). Tìm x sao cho độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.

Xem lời giải »


Câu 7:

Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3 đỉnh đó là 3 đỉnh của một tam giác vuông không cân.

Xem lời giải »


Câu 8:

Cho đường tròn (O; R) và điểm A nằm ngoài (O). Từ A kẻ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC. Lấy D đối xứng với B qua O. Gọi E là giao điểm của đoạn thẳng AD với (O) (E không trùng với D). Chọn câu đúng nhất:

Xem lời giải »