X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho một mặt phẳng (P) và hai đường thẳng song song a, b. Mệnh đề nào sau đây là sai? A. Nếu (P) // a thì (P) // b; B. Nếu (P) // a thì (P) // b hoặc chứa b; C. Nếu (P) cắt a thì (P) cũng c


Câu hỏi:

Cho một mặt phẳng (P) và hai đường thẳng song song a, b. Mệnh đề nào sau đây là sai?
A. Nếu (P) // a thì (P) // b;
B. Nếu (P) // a thì (P) // b hoặc chứa b;
C. Nếu (P) cắt a thì (P) cũng cắt b;
D. Nếu (P) chứa a thì có thể (P) song song với b.

Trả lời:

Lời giải

Đáp án đúng là: A

• Nếu (P) // a thì (P) // b

Khẳng định A là sai vì (P) có thể chứa b

• Nếu (P) // a thì (P) // b hoặc chứa b

Khẳng định B là đúng

• Nếu (P) cắt a thì (P) cũng cắt b

Khẳng định C là đúng

• Nếu (P) chứa a thì có thể (P) song song với b

Khẳng định D là đúng

Chọn đáp án A.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].

Xem lời giải »


Câu 2:

Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.

Xem lời giải »


Câu 3:

Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].

a) Rút gọn A.

b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.

Xem lời giải »


Câu 4:

Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).

a) Rút gọn biểu thức P.

b) Tìm bậc và hệ số biểu thức B.

c) Tìm giá trị các biến để P £ 0.

Xem lời giải »


Câu 5:

Cho hình 39.

a) Chứng minh ΔABD = ΔACD.

b) So sánh góc DBC và góc DCB.

Media VietJack

Xem lời giải »


Câu 6:

Cho tam giác ABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.

a) Chứng minh DABD = DACD.

b) Chứng minh rằng AM = 2.BD.

c) Tính số đo \[\widehat {MAD}\].

Xem lời giải »


Câu 7:

Tính giá trị biểu thức: B = (3x + 5)(2x − 1) + (4x − 1)(3x − 2) với |x| = 2.

Xem lời giải »


Câu 8:

Rút gọn và tính giá trị: A = (3x + 5)(2x − 1) − (1 − 4x)(3x + 2) tại |x| = 2.

Xem lời giải »