X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho một số tự nhiên gồm các số tự nhiên liên tiếp từ 1 đến 2020, được viết theo thứ


Câu hỏi:

Cho một số tự nhiên gồm các số tự nhiên liên tiếp từ 1 đến 2020, được viết theo thứ tự liền nhau như sau: 1 2 3 4 5 6 7 8 9 10 11 12 13 … 2017 2018 2019 2020 2021. Hãy tính tổng tất cả các chữ số của số đó?

Trả lời:

Bước 1: Tính tổng các chữ số từ 0 đến 999:

Thêm các chữ số 0 vào trước các số có 1 và 2 chữ số để ta được dãy số gồm toàn các số có 3 chữ số: 000; 001; 002; 003; 004; ...; 999 (Tổng các chữ số vẫn không thay đổi)

Khi này, dãy số trên có 1000 số

Số các chữ số là: 1000 × 3 = 3 000 (chữ số)

Mỗi chữ số 0; 1; 2; ...; 9 xuất hiện số lần là: 3000 : 10 = 300 (lần)

Vậy, tổng các chữ số từ 0 đến 999 là:

(0 + 1 + 2 + ... + 9) . 300 = 45 . 300 = 13 500

Bước 2: Tính tổng các chữ số từ 1000 đến 1999:

So với dãy số 000 đến 999 thì mỗi số tăng thêm 1 ở hàng nghìn

Vậy tổng các chữ số từ 1000 đến 1999 là:

13500 + 1 . 1000 = 13500 + 1000 = 14500

Bước 3: Tính tổng các chữ số từ 2000 đến 2021:

Ta có tổng các chữ số từ 2000 đến 2021 là:

(2 . 21 + 1 . 10 + 2 + 2 . 45) + (2 + 0 + 2 + 1)

= (42 + 10 + 2 + 90) + 5

= 144 + 5

= 149

Vậy, tổng tất cả các chữ số từ 1 đến 2021 là 13 500 + 14500 + 149 = 28149.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Trong mặt phẳng cho 15 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Số tam giác có đỉnh là 3 trong số 15 điểm đã cho là?

Xem lời giải »


Câu 2:

Giải phương trình: sin2x – cos2x + 3sinx – cosx – 1 = 0.

Xem lời giải »


Câu 3:

Cho hai tập hợp X = (0; 3] và Y = (a; 4). Tìm tất cả các giá trị của a ≤ 4 để X ∩ Y ≠ .

Xem lời giải »


Câu 4:

Làm theo mẫu: \(\frac{{143}}{{10}} = 14;\frac{3}{{10}} = 0,3\).

Yêu cầu: \(\frac{{126}}{{100}} = ...;\frac{{26}}{{100}} = ...\)

\(\frac{{1246}}{{10}} = ...;\frac{6}{{10}} = ...\)

Xem lời giải »


Câu 5:

Cho tam giác ABC có ba góc nhọn và đường cao BE. Gọi H và K lần lượt là chân các đường vuông góc kẻ từ điểm E đến các đường thẳng AB và BC.

1) Chứng minh tứ giác BHEK là tứ giác nội tiếp.

2) Chứng minh: BH.BA = BK.BC.

3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của đoạn thẳng EF. Chứng minh ba điểm H, I, K là ba điểm thẳng hàng.

Xem lời giải »


Câu 6:

Cho tam giác ABC có AB = a, AC = 2a. Gọi D là trung điểm AC, M là điểm thỏa mãn \[\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} \]. Chứng minh: BD vuông góc AM.

Xem lời giải »


Câu 7:

Cho tam giác ABC vuông tại A (AB < AC) có D và E lần lượt là trung điểm của các cạnh AC và BC. Vẽ EF vuông góc với AB tại F.

a) Chứng minh rằng DE //AB và tứ giác ADEF là hình chữ nhật.

b) Trên tia đối của tia DE lấy điểm G sao cho DG = DE. Chứng minh tứ giác AECG là hình thoi.

c) Gọi O là giao điểm của AE và DF. Chứng minh rằng ba điểm B, O, G thẳng hàng.

d) Vẽ EH vuông góc với AG tại H. Chứng minh rằng tam giác DHF vuông.

Xem lời giải »


Câu 8:

Cho tam giác ABC vuông tại A có \(\widehat C = 30^\circ \). Gọi M và N lần lượt là trung điểm của BC và AC.

a) Tính \(\widehat {NMC}\).

b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.

c)Lấy D là điểm đối xứng với E qua BC. Tứ giác ACDB là hình gì? Tại sao?

d) Tam giác ABC có điều kiện gì thì tứ giác AECM là hình vuông?

Xem lời giải »