Cho phương trình 4sin(x + pi/3).cos(x - pi/6) = a^2 + căn bậc hai 3 sin2x - cos2x (1). Gọi n là
Câu hỏi:
Cho phương trình \[4\sin \left( {x + \frac{\pi }{3}} \right).\cos \left( {x - \frac{\pi }{6}} \right) = {a^2} + \sqrt 3 \sin 2x - \cos 2x(1)\]. Gọi n là số giá trị nguyên của tham số a để phương trình (1) có nghiệm. Tính n.
A. n = 5;
B. n = 3;
C. n = 2;
D. n = 1.
Trả lời:
Đáp án đúng là: A
Ta có: \(4\sin \left( {x + \frac{\pi }{3}} \right).\cos \left( {x - \frac{\pi }{6}} \right) = {a^2} + \sqrt 3 \sin 2x - \cos 2x & (1)\)
⇔ \(\sin \left( {2x + \frac{\pi }{6}} \right) + 1 = \frac{{{a^2}}}{2} + \frac{{\sqrt 3 }}{2}\sin 2x - \frac{1}{2}\cos 2x\)
\( \Leftrightarrow \sin \left( {2x + \frac{\pi }{6}} \right) + 1 = \frac{{{a^2}}}{2} + \sin \left( {2x - \frac{\pi }{6}} \right)\)
\( \Leftrightarrow \sin \left( {2x + \frac{\pi }{6}} \right) - \sin \left( {2x - \frac{\pi }{6}} \right) = \frac{{{a^2}}}{2} - 1\)
\( \Leftrightarrow 2\cos 2x.\sin \frac{\pi }{3} = \frac{{{a^2}}}{2} - 1 \Leftrightarrow \cos 2x = \frac{{{a^2}}}{2} - 1\)
Phương trình (1) có nghiệm khi và chỉ khi:
\( - 1 \le \frac{{{a^2}}}{2} - 1 \le 1 \Leftrightarrow 0 \le \frac{{{a^2}}}{2} \le 2\)
⇔ 0 ≤ a2 ≤ 4
⇔ −2 ≤ a ≤ 2
Do a ∈ ℤ nên a = 0; a = ± 1; a = ± 2.
Vậy n = 5.