X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho phương trình mx^2 – (2m + 1)x + (m + 1) = 0    (1) a) Giải phương trình (1) với m = - 3/5. b) Chứng minh rằng phương trình (1) luông có nghiệm với mọi giá trị của m. c) Tìm các giá trị


Câu hỏi:

Cho phương trình mx2 – (2m + 1)x + (m + 1) = 0    (1)

a) Giải phương trình (1) với \(m = \frac{{ - 3}}{5}\).

b) Chứng minh rằng phương trình (1) luông có nghiệm với mọi giá trị của m.

c) Tìm các giá trị của m để phương trình (1) có nghiệm lớn hơn 2.

Trả lời:

Lời giải

a) Thế \(m = \frac{{ - 3}}{5}\) vào phương trình (1) ta được: \(\frac{{ - 3}}{5}{x^2} + \frac{1}{5}x + \frac{2}{5} = 0\).

–3x2 + x + 2 = 0.

(3x + 2)(x – 1) = 0.

\( \Leftrightarrow \left[ \begin{array}{l}3x + 2 = 0\\x - 1 = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{2}{3}\\x = 1\end{array} \right.\)

Vậy với \(m = \frac{{ - 3}}{5}\) thì tập nghiệm của phương trình đã cho là \(S = \left\{ { - \frac{2}{3};1} \right\}\).

b) Ta có ∆ = (2m + 1)2 – 4m(m + 1) = 4m2 + 4m + 1 – 4m2 – 4m = 1 > 0, m.

Vậy phương trình (1) luôn có nghiệm, với mọi giá trị của m.

c) Hai nghiệm của phương trình (1) là: \(\left[ \begin{array}{l}{x_1} = \frac{{2m + 1 + 1}}{{2m}} = \frac{{m + 1}}{m}\\{x_2} = \frac{{2m + 1 - 1}}{{2m}} = 1\end{array} \right.\)

Vì x2 = 1 < 2 nên để phương trình (1) có nghiệm lớn hơn 2 thì x1 > 2.

Tức là, \(\frac{{m + 1}}{m} > 2\).

\( \Leftrightarrow \frac{{ - m + 1}}{m} > 0\).

\( \Leftrightarrow \left\{ \begin{array}{l} - m + 1 > 0\\m > 0\end{array} \right.\) hoặc \(\left\{ \begin{array}{l} - m + 1 < 0\\m < 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m < 1\\m > 0\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}m > 1\\m < 0\end{array} \right.\) (vô lí).

0 < m < 1.

Vậy 0 < m < 1 thỏa mãn yêu cầu bài toán.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).

Xem lời giải »


Câu 2:

Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.

Xem lời giải »


Câu 3:

Cho hình bình hành ABCD có AC vuông góc AD, AD = 3,5 cm, \(\widehat D = 60^\circ \). Tính diện tích hình bình hành ABCD.

Xem lời giải »


Câu 4:

Một cửa hàng giảm giá 10% so với giá bán bình thường nhưng vẫn lãi 8% so với giá vốn. Hỏi nếu không giảm giá thì lãi bao nhiêu phần trăm so với giá vốn?

Xem lời giải »


Câu 5:

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \sqrt {x - m} + \sqrt {2x - m - 1} \) xác định trên (0; +∞).

Xem lời giải »


Câu 6:

Tìm x, biết: \(\frac{2}{3} - \frac{5}{3}x = \frac{7}{{10}}x + \frac{5}{6}\).

Xem lời giải »


Câu 7:

Cho hai tập hợp A = (m – 1; 5], B = (3; 2020 – 5m) và A, B khác rỗng. Có bao nhiêu giá trị nguyên của m để A \ B = ?

Xem lời giải »


Câu 8:

Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.

Media VietJack

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x) = |f(x) – m + 2018| có 7 điểm cực trị?

Xem lời giải »