X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC có G là trọng tâm. So sánh diện tích tam giác AGB, BGC và CGA


Câu hỏi:

Cho tam giác ABC có G là trọng tâm. So sánh diện tích tam giác AGB, BGC và CGA.

Trả lời:

Cho tam giác ABC có G là trọng tâm. So sánh diện tích tam giác AGB, BGC và CGA (ảnh 1)

Gọi N, M, E lần lượt là trung điểm của AB, AC và BC.

Suy ra CN, BM, AE là các đường trung tuyến của ΔABC

Do đó, CN, BM, AE cắt nhau tại G.

Áp dụng tính chất đường trung tuyến trong tam giác ta có:

\[AG = \frac{2}{3}AE;\,\,BG = \frac{2}{3}BM;\,\,CG = \frac{2}{3}CN\]

Xét ΔAGB và ΔAEB có cùng đường cao hạ từ B xuống AE

Mà đáy \[AG = \frac{2}{3}AE\]

Suy ra \[{S_{AGB}} = \frac{2}{3}{S_{AEB}}\] (1)

Xét ΔAEB và ΔABC có cùng chung chiều cao hạ từ A xuống BC

Mà đáy \[BE = \frac{1}{2}BC\] (vì E là trung điểm của BC)

Suy ra \[{S_{AEB}} = \frac{1}{2}{S_{ABC}}\] (2)

Từ (1) và (2) ta có: \[{S_{AGC}} = \frac{2}{3} \cdot \frac{1}{2}{S_{ABC}} = \frac{1}{3}{S_{ABC}}\]

Chứng minh tương tự ta có: \[{S_{AGC}} = \frac{1}{3}{S_{ABC}};\,\,{S_{BGC}} = \frac{1}{3}{S_{ABC}}\]

Suy ra \[{S_{AGB}} = \,\,{S_{BGC}} = {S_{AGC}} = \frac{1}{3}{S_{ABC}}\]

Vậy \[{S_{AGB}} = \,\,{S_{BGC}} = {S_{AGC}}\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Chứng minh rằng: (x – y)(xn – yn) chia hết cho (x – y)2.

Xem lời giải »


Câu 6:

Cho x, y, z, t Î *. Chứng minh rằng:

\[M = \frac{x}{{x + y + z}} + \frac{y}{{x + y + t}} + \frac{z}{{y + z + t}} + \frac{t}{{x + z + t}}\] không phải số tự nhiên.

Xem lời giải »


Câu 7:

Gọi S là tập các giá trị của tham số m để đồ thị hàm số y = x4 − 2x2 + m − 1 có đúng một tiếp tuyến song song với trục Ox. Tìm tổng các phần tử của S.

Xem lời giải »


Câu 8:

Cho Parabol  (P): y = x2 và đường thẳng (d): y = mx m + 1.

a) Tìm toạ  độ giao điểm của (P) và (d) khi m = 4.

b) Tìm m để (d) cắt (P) tạo hai điểm phân biệt có hoành độ thoả mãn x= 9x2.

Xem lời giải »