Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC và CA; D, E, F lần lượt là trung điểm các đoạn HA, HB và HC. a) Chứng minh rằng các tứ giác MNFD và M
Câu hỏi:
Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC và CA; D, E, F lần lượt là trung điểm các đoạn HA, HB và HC.
a) Chứng minh rằng các tứ giác MNFD và MEFP là các hình chữ nhật.
Trả lời:
a) Vì M, D là trung điểm của AB, AH nên MD là đường trung bình của tam giác ABH
⇒ MD // BH và MD = BH (1)
Lại có: NF là đường trung bình của tam giác BHC nên NF // BH và NF = BH (2)
Từ (1) và (2) suy ra: MD // NF và MD = NF
Suy ra: MNFD là hình bình hành. (*)
Lại có: = 90° (**)
Từ (*) và (**) suy ra: MNFD là hình chữ nhật.
Chứng minh tương tự:
EF // BC và MP // BC (là đường trung bình của tam giác BHC và tam giác ABC)
EF = MP = BC
⇒ MEFP là hình bình hành
ME // AH và EF // BC mà AH ⊥ BC nên ME ⊥ EF.
Suy ra: MEFP là hình chữ nhật.