Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Từ H vẽ HE và HF lần lượt
Câu hỏi:
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Từ H vẽ HE và HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh: AEHF là hình chữ nhật và AH = EF.
b) Trên tia FC xác định điểm K sao cho FK = AF. Chứng minh tứ giác EHKF là hình bình hành.
c) Biết BC = 5cm, AC = 4 cm. Tính diện tích tam giác ABC
Trả lời:
a) Xét tứ giác AEHF:
\(\widehat {EAF} = \widehat {AEH} = \widehat {AFH} = 90^\circ \)
(Do tam giác ABC vuông tại A; HE và HF lần lượt vuông góc với AB và AC).
⇒ AEHF là hình chữ nhật.
⇒ AH = EF (Tính chất 2 đường chéo của hình chữ nhật).
b) Ta có: FK = AF (gt).
Mà AF = EH (AEHF là hình chữ nhật).
⇒ AF = EH = FK.
Ta có: EH // AF (AEHF là hình chữ nhật).
Mà F thuộc AK (gt).
⇒ EH // FK.
Xét tứ giác EHKF:
EH // FK (cmt).
EH = FK (cmt).
⇒ EHKF là hình bình hành (dhnb).
c) Xét tam giác ABC vuông tại A:
Ta có: BC2 = AB2 + AC2 (Định lý Pytago).
Thay số: 52 = AB2 + 42.
⇒ AB2 = 9 ⇒ AB = 3.
Diện tích tam giác ABC vuông tại A: SABC = \(\frac{1}{2}.AB.AC = \frac{1}{2}.3.4 = 6\left( {c{m^2}} \right)\).