X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Từ H vẽ HE và HF lần lượt


Câu hỏi:

Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Từ H vẽ HE và HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).

a) Chứng minh: AEHF là hình chữ nhật và AH = EF.

b) Trên tia FC xác định điểm K sao cho FK = AF. Chứng minh tứ giác EHKF là hình bình hành.

c) Biết BC = 5cm, AC = 4 cm. Tính diện tích tam giác ABC

Trả lời:

Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Từ H vẽ HE và HF lần lượt (ảnh 1)

a) Xét tứ giác AEHF:

\(\widehat {EAF} = \widehat {AEH} = \widehat {AFH} = 90^\circ \)

(Do tam giác ABC vuông tại A; HE và HF lần lượt vuông góc với AB và AC).

AEHF là hình chữ nhật.

AH = EF (Tính chất 2 đường chéo của hình chữ nhật).

b) Ta có: FK = AF (gt).

Mà AF = EH (AEHF là hình chữ nhật).

AF = EH = FK.

Ta có: EH // AF (AEHF là hình chữ nhật).

Mà F thuộc AK (gt).

EH // FK.

Xét tứ giác EHKF:

 EH // FK (cmt).

 EH = FK (cmt).

 EHKF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

Ta có: BC= AB2 + AC2 (Định lý Pytago).

Thay số: 52 = AB2 + 42.

AB= 9 AB = 3.

Diện tích tam giác ABC vuông tại A: SABC = \(\frac{1}{2}.AB.AC = \frac{1}{2}.3.4 = 6\left( {c{m^2}} \right)\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A, B, C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ điểm A, vẽ hai tiếp tuyến AM; AN. Gọi E và F lần lượt là trung điểm của BC và MN.

a) Chứng minh AM2 = AN2 = AB.AC.

b) ME cắt (O) tại I. Chứng minh IN // AB.

c) Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi (O) thay đổi nhưng luôn đi qua B và C.

Xem lời giải »


Câu 2:

Chứng minh rằng 4n3 + 9n2 – 19n – 30 chia hết cho 6 (n ℤ).

Xem lời giải »


Câu 3:

Bạn An nghĩ ra một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3 và chữ số tận cùng là số chẵn.

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = 2n + 3. Dãy số này có phải cấp số cộng không?

Xem lời giải »


Câu 5:

Từ các chữ số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau?

Xem lời giải »


Câu 6:

Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau sao cho tích ba chữ số đó là một số chẵn?

Xem lời giải »


Câu 7:

Tính \(\lim \left( {\sqrt[3]{{{n^3} + 8{n^2}}} - n} \right)\).

Xem lời giải »


Câu 8:

Tính \(\lim \left[ {n\left( {\sqrt {{n^2} + 2} - \sqrt {{n^2} - 1} } \right)} \right]\).

Xem lời giải »