X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // OQ (M thuộc


Câu hỏi:

Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // OQ (M thuộc OP), IN // OP (N thuộc OQ). Chứng minh rằng: Tam giác IMN cân tại I.

Trả lời:

Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // OQ (M thuộc  (ảnh 1)

a) Xét ΔOPQ có: I là trung điểm của PQ và IN // OP

Do đó N là trung điểm của OQ

Xét ΔOPQ có: I là trung điểm của PQ và IM // OQ

Do đó M là trung điểm của OP

Vì tam giác OPQ cân tại O  nên \(\widehat P = \widehat Q\) và OP = OQ

Suy ra MP = NQ = OM = ON

Xét ΔMPI và ΔNQI có 

MP = NQ (chứng minh trên);

\(\widehat P = \widehat Q\) (chứng minh trên);

PI = QI (giả thiết)

Do đó: ΔMPI = ΔNQI (c.g.c)

Suy ra: IM = IN (hai cạnh tương ứng)

Hay ΔIMN cân tại I.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tính tích phân\(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sqrt {1 + \sin x} dx} \).

Xem lời giải »


Câu 2:

Tìm số thực a để \(\sqrt {9 - 3a} \)có nghĩa.

Xem lời giải »


Câu 3:

Cho hình chữ nhật ABCD, tâm O, AB = 4, BC = 3. I là trung điểm BC. Tính \(\left| {\overrightarrow {IA} - \overrightarrow {DI} } \right|;\left| {\overrightarrow {IA} + \overrightarrow {IB} } \right|\).

Xem lời giải »


Câu 4:

Cho tam giác đều cạnh a. Tính \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|;\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).

Xem lời giải »


Câu 5:

Tính các góc của hình thang ABCD (AB // CD), biết rằng \[\widehat A = 3\widehat D,\widehat B - \widehat C = 30^\circ \].

Xem lời giải »


Câu 6:

Một trang trại nuôi ong mật mua 75 chiếc can loại 10 lít để đựng mật ong chuẩn bị cho vụ thu hoạch vào vụ thu hoạc số mật ong tăng gấp đôi so với dự kiến vậy để đựng hết số mật ong thu hoạch được trại nuôi ong cần mấy can 10 lít.

Xem lời giải »


Câu 7:

Cho hàm số \(y = \frac{{\sin x + 1}}{{{{\sin }^2}x + \sin x + 1}}\). M là giá trị lớn nhất, m là giá trị nhỏ nhất của y. Tính M.m?

Xem lời giải »


Câu 8:

Tính giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\)trên khoảng (0; +∞).

Xem lời giải »