X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tập hợp A = {1; 2; 3; ; 10}. Chọn ngẫu nhiên ba số từ A. Tìm xác suất để


Câu hỏi:

Cho tập hợp A = {1; 2; 3; …; 10}. Chọn ngẫu nhiên ba số từ A. Tìm xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.

Trả lời:

Chọn 3 số bất kì có \[C_{10}^3 = 120\]cách.

Trường hợp 1: 3 số chọn ra là 3 số tự nhiên liên tiếp có 8 cách

Trường hợp 2: 3 số chọn ra là 2 số tự nhiên liên tiếp

3 số chọn ra có cặp (1; 2) hoặc (9; 10) có 2 × 7 = 14 cách

3 số chọn ra có cặp {(2; 3), (3; 4), ..., (8; 9)}

Có 6 × 6 = 36 cách

Vậy xác suất cần tìm là: \[\frac{{120 - 8 - 14 - 36}}{{120}} = \frac{7}{{15}}\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Cho hình bình hành ABCD, AB > AD. Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD lần lượt tai M, N. Chứng minh:    

OM = ON.

Xem lời giải »


Câu 6:

Cho hình bình hành ABCD, AB > AD. Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD lần lượt tai M, N. Chứng minh: Tứ giác BMDN là hình bình hành.

Xem lời giải »


Câu 7:

Tìm trung bình cộng của các số sau:

5; 10; 15; 20;….; 2000; 2005

Xem lời giải »


Câu 8:

Tìm 5 số chẵn liên tiếp, biết TBC của chúng bằng 126

Xem lời giải »