X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tứ diện ABCD có thể tích bằng 12 và G là trọng tâm của tam giác BCD


Câu hỏi:

Cho tứ diện ABCD có thể tích bằng 12 và G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp A.GBC

A. V = 3.

B. V = 4.

C. V = 5.

D. V = 6.

Trả lời:

Đáp án đúng là: B

Cho tứ diện ABCD có thể tích bằng 12 và G là trọng tâm của tam giác BCD (ảnh 1)

Tứ diện ABCD và khối chóp A.GBC có cùng đường cao là khoảng cách từ A đến mặt phẳng (BCD). Do G là trọng tâm tam giác BCD nên ta có S∆BGC = S∆BGD = S∆CGD S∆BCD = 3SBGC.

Áp dụng công thức thể tích hình chóp ta có:

\(\left. {\begin{array}{*{20}{c}}{{V_{A.BCD}} = \frac{1}{3}h \cdot {S_{\Delta BCD}}}\\{{V_{A.GBC}} = \frac{1}{3}h \cdot {S_{\Delta GBC}}}\end{array}} \right\} \Rightarrow \frac{{{V_{A.BCD}}}}{{{V_{A.GBC}}}} = \frac{{\frac{1}{3}h \cdot {S_{\Delta BCD}}}}{{\frac{1}{3}h \cdot {S_{\Delta GBC}}}} = \frac{{{S_{\Delta BCD}}}}{{{S_{\Delta GBC}}}} = 3\)

\( \Rightarrow {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.\)

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hai tập hợp X = {1; 2; 3; 4}; Y = {1;2}. Tập hợp CXY là tập hợp nào sau đây?

Xem lời giải »


Câu 2:

Nghiệm của phương trình cos x + sin x = 0 là:

Xem lời giải »


Câu 3:

Giá trị của biểu thức A=tan1°tan2°tan3°...tan88°tan89° là:

Xem lời giải »


Câu 4:

Giá trị của tan 45° + cot 135° bằng bao nhiêu?

Xem lời giải »


Câu 5:

Cho hai tập hợp E = {x  ℝ: f(x) = 0}; F = { x  ℝ: g(x) = 0}; H = {x  ℝ: f(x).g(x) = 0}. Trong các mệnh đề sau, mệnh đề đúng là:

Xem lời giải »


Câu 6:

Hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại I . Đường thẳng qua I và vuông góc với IA cắt OB tại K. Chọn khẳng định đúng.

Xem lời giải »


Câu 7:

Hai tiếp tuyến tại A và B của đường tròn (O;R) cắt nhau tại M. Nếu \[MA = R\sqrt 3 \] thì góc góc (AOB) bằng:

Xem lời giải »


Câu 8:

Phép vị tự nào sau đây biến đường tròn (C): (x ‒ 3)2 + (y ‒ 1)2 = 4 thành đường tròn (C’): (x ‒ 5)2 + (y ‒ 3)2 = 4

Xem lời giải »