X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tứ diện đều ABCD, cạnh a. Gọi I, J lần lượt là trung điểm của AC, BC. Gọi K là một điểm trên cạnh BD sao cho KB = 2KD. a) Xác định thiết diện của tứ diện với mặt phẳng (IJK). Chứng minh


Câu hỏi:

Cho tứ diện đều ABCD, cạnh a. Gọi I, J lần lượt là trung điểm của AC, BC. Gọi K là một điểm trên cạnh BD sao cho KB = 2KD.

a) Xác định thiết diện của tứ diện với mặt phẳng (IJK). Chứng minh thiết diện là hình thang cân.

b) Tính diện tích thiết diện đó.

Trả lời:

Lời giải

Media VietJack

a) Trong (BCD): gọi M = JK ∩ CD.

Trong (ACD): gọi N = IM ∩ AD.

Ta có:

(IJK) ∩ (ABC) = IJ.

(IJK) ∩ (BCD) = JK.

(IJK) ∩ (ABD) = KN.

(IJK) ∩ (ACD) = NI.

Suy ra thiết diện của tứ diện với mặt phẳng (IJK) là tứ giác IJKN.

Ta có I, J lần lượt là trung điểm của AC, BC.

Suy ra IJ là đường trung bình của tam giác ABC.

Do đó IJ // AB.

Mà IJK) ∩ (ABD) = KN.

Vì vậy KN // AB // IJ    (1)

Áp dụng định lí Thales, ta có \(\frac{{AN}}{{DA}} = \frac{{BK}}{{DB}} = \frac{2}{3}\).

Mà BD = AD (do ABCD là tứ diện đều).

Suy ra AN = BK.

Ta có ∆AIN = ∆BJK (c.g.c).

Suy ra IN = JK      (2)

Từ (1), (2), suy ra tứ giác IJKN là hình thang cân.

b) Kẻ NH IJ tại H và KE IJ tại E.

Ta có \(IJ = \frac{{AB}}{2} = \frac{a}{2}\); \(NK = \frac{1}{3}AB = \frac{a}{3}\);\(BJ = \frac{{BC}}{2} = \frac{a}{2}\) và \(BK = \frac{2}{3}BD = \frac{{2a}}{3}\).

Ta có IH = EJ và NK = HE.

Suy ra \(IH = \frac{{IJ - NK}}{2} = \frac{{\frac{a}{2} - \frac{a}{3}}}{2} = \frac{a}{{12}}\).

Ta có \[J{K^2} = B{J^2} + B{K^2} - 2BJ.BK.\cos \widehat {JBK}\]

                 \[ = \frac{{{a^2}}}{4} + \frac{{4{a^2}}}{9} - 2.\frac{a}{2}.\frac{{2a}}{3}.\cos 60^\circ = \frac{{13{a^2}}}{{36}}\].

Suy ra \(NI = JK = \frac{{a\sqrt {13} }}{6}\).

Tam giác NIH vuông tại H:

\(NH = \sqrt {N{I^2} - I{H^2}} = \sqrt {\frac{{13{a^2}}}{{36}} - \frac{{{a^2}}}{{144}}} = \frac{{a\sqrt {51} }}{{12}}\).

Diện tích hình thang IJKN là:

\(S = \frac{{NH.\left( {NK + IJ} \right)}}{2} = \frac{{\frac{{a\sqrt {51} }}{{12}}.\left( {\frac{a}{3} + \frac{a}{2}} \right)}}{2} = \frac{{5{a^2}\sqrt {51} }}{{144}}\).

Vậy diện tích thiết diện bằng \(\frac{{5{a^2}\sqrt {51} }}{{144}}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Biết rằng \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{1 + \cos x}}{{{{\left( {x - \pi } \right)}^2}}},\,\,\,\,\,\,x \ne \pi \\m,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \pi \end{array} \right.\) liên tục tại x = π.

Xem lời giải »


Câu 2:

Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

Xem lời giải »


Câu 3:

Chứng minh rằng với mọi góc α (0° ≤ α ≤ 180°), ta đều có sin2α + cos2α = 1.

Xem lời giải »


Câu 4:

So le ngoài là như thế nào? Lấy ví dụ.

Xem lời giải »


Câu 5:

Phương là gì, chiều là gì, hướng là gì trong toán học?

Xem lời giải »


Câu 6:

Có 30 tấm thẻ đánh số từ 1 đến 30. Lấy ngẫu nhiên 3 tấm thẻ rồi nhân các số trên 3 thẻ. Tìm xác suất để kết quả đạt được là một số chia hết cho 6.

Xem lời giải »


Câu 7:

Cho tam giác ABC đều cạnh a. Khi đó \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\) bằng:

Xem lời giải »


Câu 8:

Cho tam giác ABC đều cạnh a. Tính độ dài các vectơ \(\overrightarrow {AB} - \overrightarrow {AC} ;\overrightarrow {AB} + \overrightarrow {AC} \).

Xem lời giải »