X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tứ diện OABC có OA vuông góc với (OBC) và OA = OB = 2OC, góc BOC = 60^0. Gọi M là trung điểm của BC. Tính côsin giữa hai đường thẳng OM và AB.


Câu hỏi:

Cho tứ diện OABC có OA vuông góc với (OBC) và OA = OB = 2OC, \(\widehat {BOC} = 60^\circ \). Gọi M là trung điểm của BC. Tính côsin giữa hai đường thẳng OM và AB.

Trả lời:

Lời giải

Media VietJack

Gọi N là trung điểm của AC.

Suy ra MN là đường trung bình của tam giác ABC.

Do đó MN // AB và \(MN = \frac{{AB}}{2} = \frac{{\sqrt {O{A^2} + O{B^2}} }}{2} = \frac{{\sqrt {4O{C^2} + 4O{C^2}} }}{2} = \sqrt 2 OC\).

Khi đó góc giữa hai đường thẳng OM và AB là góc giữa hai đường thẳng OM và MN và bằng \(\widehat {OMN}\).

Tam giác OAC vuông tại O có ON là đường trung tuyến.

Suy ra \(ON = AN = NC = \frac{{AC}}{2} = \frac{{\sqrt {O{A^2} + O{C^2}} }}{2} = \frac{{OC\sqrt 5 }}{2}\).

Ta có \(B{C^2} = O{B^2} + O{C^2} - 2OB.OC.\cos \widehat {BOC} = 5O{C^2} - 4O{C^2}.\cos 60^\circ = 3O{C^2}\).

Khi đó \(O{M^2} = \frac{{2\left( {O{B^2} + O{C^2}} \right) - B{C^2}}}{4} = \frac{{2\left( {4O{C^2} + O{C^2}} \right) - 3O{C^2}}}{4} = \frac{{7O{C^2}}}{4}\).

Ta có \(\cos \widehat {OMN} = \frac{{O{M^2} + M{N^2} - O{N^2}}}{{2.OM.MN}} = \frac{{\frac{{7O{C^2}}}{4} + 2O{C^2} - \frac{{5O{C^2}}}{4}}}{{2.\frac{{OC\sqrt 7 }}{2}.\sqrt 2 OC}} = \frac{{5\sqrt {14} }}{{28}}\).

Vậy côsin giữa hai đường thẳng OM và AB bằng \(\frac{{5\sqrt {14} }}{{28}}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f(x) = mx + m – 1. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = 0 có nghiệm thuộc (3; 4).

Xem lời giải »


Câu 2:

Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.

Xem lời giải »


Câu 3:

Cho hình bình hành ABCD có AC vuông góc AD, AD = 3,5 cm, \(\widehat D = 60^\circ \). Tính diện tích hình bình hành ABCD.

Xem lời giải »


Câu 4:

Một cửa hàng giảm giá 10% so với giá bán bình thường nhưng vẫn lãi 8% so với giá vốn. Hỏi nếu không giảm giá thì lãi bao nhiêu phần trăm so với giá vốn?

Xem lời giải »


Câu 5:

Cách xác định cạnh kề, cạnh đối, cạnh huyền trong tam giác vuông.

Xem lời giải »


Câu 6:

a) Viết phương trình đường thẳng biết đồ thị của nó cắt trục tung tại điểm có tung độ bằng 4 và cắt trục hoành tại điểm có hoành độ bằng –3.

b) Viết phương trình đường thẳng (d) biết (d) có hệ số góc là –2 và đi qua điểm A(–1; 5).

Xem lời giải »


Câu 7:

Cho hàm số y = (m – 1)x + m (1) (với m là tham số, m ≠ 0).

a) Tìm m để đồ thị hàm số (1) đi qua điểm M(1; 3).

b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 4. Vẽ đồ thị hàm số với m tìm được.

Xem lời giải »


Câu 8:

Tìm dư trong phép chia đa thức f(x) = 1 + x2 + x4 + x6 + ... + x100 cho x + 1.

Xem lời giải »