X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Phương trình 5^x + 25^(1-x) = 6 có tích các nghiệm là: A. log5 ((1 - căn bậc hai 21)


Câu hỏi:

Phương trình 5x + 251-x = 6 có tích các nghiệm là:

A. \[{\log _5}\left( {\frac{{1 - \sqrt {21} }}{2}} \right)\];

B. \({\log _5}\left( {\frac{{1 + \sqrt {21} }}{2}} \right)\);

C. 5;

D. \(5\log \left( {\frac{{1 + \sqrt {21} }}{2}} \right)\).

Trả lời:

Đáp án đúng là: B

Ta có:

5x + 251-x = 6

5x + 52(1-x) = 6

\( \Leftrightarrow {5^x} + \frac{{{5^2}}}{{{5^{2x}}}} = 6\)

53x + 25 = 6.52x

Đặt t = 5x > 0

Khi đó phương trình trở thành:

t3 – 6t2 + 25 = 0

(t – 5)(t2 – t – 5) = 0

\( \Leftrightarrow \left[ \begin{array}{l}t = 5\\t = \frac{{1 + \sqrt {21} }}{2}\\t = \frac{{1 - \sqrt {21} }}{2}\end{array} \right.\)

Vì t > 0 nên ta có: \(\left[ \begin{array}{l}t = 5\\t = \frac{{1 + \sqrt {21} }}{2}\end{array} \right.\)

Với t = 5 5x = 5 x = 1

Với \(t = \frac{{1 + \sqrt {21} }}{2} \Rightarrow {5^x} = \frac{{1 + \sqrt {21} }}{2} \Leftrightarrow x = {\log _5}\left( {\frac{{1 + \sqrt {21} }}{2}} \right)\)

Vậy tích các nghiệm của phương trình bằng: \({\log _5}\left( {\frac{{1 + \sqrt {21} }}{2}} \right)\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông tại A. E là trung điểm của B’C’, CB’ cắt BE tại M. Tính thể tích V của khối tứ diện ABCM biết AB = 3a, AA’ = 6a.

Xem lời giải »


Câu 2:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B, biết BA = BC = 2a và (A’BC) hợp với đáy một góc 30°. Tính thể tích khối lăng trụ ABC.A’B’C’ là:

Xem lời giải »


Câu 3:

Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và \(\widehat {ABC} = 120^\circ \). Các cạnh AA', A'B, A'D cùng tạo với đáy một góc 60°. Tính theo a thể tích V của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Quãng đường AB gồm một đoạn lên dốc dài 4 km và một đoạn xuống dốc dài 5 km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc.

Xem lời giải »


Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với \(AB = 2a\sqrt 3 \); BC = 2a. Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm đoạn DI và SB hợp với mặt phẳng đáy (ABCD) một góc 60°. Khoảng cách từ D đến (SBC) tính theo a bằng

Xem lời giải »


Câu 6:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, mặt bên (SBC) là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng

Xem lời giải »


Câu 7:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a. Diện tích xung quanh của hình nón đỉnh S và đáy là hình tròn nội tiếp ABCD là:

Xem lời giải »


Câu 8:

Tìm nghiệm của phương trình 3x 1 = 9.

Xem lời giải »