X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho n là số nguyên dương, tìm n sao cho: log a2019 + 2^2log căn bậc hai của a 2019 + 3^2log căn bậc hai của 3a2019 + ... + n^2log căn bậc hai của na2019 = 1008^2,.2017^2log a2019


Câu hỏi:

Cho n là số nguyên dương, tìm n sao cho:

\[{\log _a}2019 + {2^2}{\log _{\sqrt a }}2019 + {3^2}{\log _{\sqrt[3]{a}}}2019 + ... + {n^2}{\log _{\sqrt[n]{a}}}2019 = {1008^2}\,.\,{2017^2}{\log _a}2019\]

Trả lời:

Lời giải

\[{\log _a}2019 + {2^2}{\log _{\sqrt a }}2019 + {3^2}{\log _{\sqrt[3]{a}}}2019 + ... + {n^2}{\log _{\sqrt[n]{a}}}2019\]

\( = {\log _a}2019 + {2^2}\,.\,2{\log _a}2019 + {3^2}\,.\,3{\log _a}2019 + ... + {n^2}\,.\,n{\log _a}2019\)

= log a 2019 + 23 . log a 2019 + 33 . log a 2019 + … + n3 . log a 2019

= (13 + 23 + 33 + … + n3) log a 2019

Suy ra \[{\log _a}2019 + {2^2}{\log _{\sqrt a }}2019 + {3^2}{\log _{\sqrt[3]{a}}}2019 + ... + {n^2}{\log _{\sqrt[n]{a}}}2019\]

\[ = {1008^2}\,.\,{2017^2}{\log _a}2019\]

Khi: 13 + 23 + 33 + … + n3 = 10082 . 20172

\( \Rightarrow {\left( {\frac{{{n^2} + n}}{2}} \right)^2} = {1008^2}\,.\,{2017^2}\)

\( \Rightarrow \frac{{n\left( {n + 1} \right)}}{2} = 1008\,.\,2017\)

Û n(n + 1) = 2 . 1008 . 2017 = 2016 . 2017

Þ n = 2016

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:

\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]

Xem lời giải »


Câu 2:

Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.

Xem lời giải »


Câu 3:

Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?

Xem lời giải »


Câu 4:

Chứng minh phương trình sau đây vô nghiệm:

5sin 2x + sin x + cos x + 6 = 0.

Xem lời giải »


Câu 5:

Tập hợp tất cả các giá trị của tham số m để hàm số \(y = \frac{{3x + 5}}{{{{\log }_{2018}}\left( {{x^2} - 2x + {m^2} - 4m + 5} \right)}}\) xác định với mọi x Î ℝ là:

Xem lời giải »


Câu 6:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số \(y = \frac{{4x + 7}}{{{{\log }_{2018}}\left( {{x^2} - 2x + {m^2} - 6m + 10} \right)}}\) xác định với mọi x Î ℝ.

Xem lời giải »


Câu 7:

Chứng minh x2 + y2 ³ 2xy.

Xem lời giải »


Câu 8:

Chứng minh đẳng thức: x2 + y2 = (x + y)2 − 2xy.

Xem lời giải »