Có 6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp
Câu hỏi:
Có 6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho hai thầy giáo không đứng cạnh nhau?
Trả lời:
Có 8! cách xếp 8 người.
Có 2! cách xếp hai giáo viên đứng cạnh nhau.
Khi đó có 2!.7! cách xếp 8 người sao cho hai giáo viên đứng cạnh nhau.
Mà hai giáo viên không đứng cạnh nhau nên số cách xếp là cách xếp 8! – 2!.7! = 30240.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tính tích phân\(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sqrt {1 + \sin x} dx} \).
Xem lời giải »
Câu 3:
Cho hình chữ nhật ABCD, tâm O, AB = 4, BC = 3. I là trung điểm BC. Tính \(\left| {\overrightarrow {IA} - \overrightarrow {DI} } \right|;\left| {\overrightarrow {IA} + \overrightarrow {IB} } \right|\).
Xem lời giải »
Câu 4:
Cho tam giác đều cạnh a. Tính \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|;\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).
Xem lời giải »
Câu 5:
Có bao nhiêu số tự nhiên có 5 chữ số khác nhau và là số chẵn?
Xem lời giải »
Câu 6:
Có bao nhiêu số tự nhiên có ba chữ số phân biệt sao cho tổng các chữ số là lẻ?
Xem lời giải »
Câu 7:
Đội tuyển học sinh giỏi Toán 12 của trường THPT X có 7 học sinh trong đó có bạn Minh Anh. Lực học của các học sinh là như nhau. Nhà trường chọn ngẫu nhiên 4 học sinh đi thi. Tìm xác suất để Minh Anh được chọn đi thi.
Xem lời giải »
Câu 8:
Một tam giác có chiều cao bằng \(\frac{3}{4}\) cạnh đáy. Nếu chiều cao tăng thêm 3dm và cạnh đáy giảm đi 3dm thì diện tích của nó tăng thêm 12dm2. Tính diện tích của tam giác ban đầu?
Xem lời giải »