X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Giải hệ phương trình: 5a^2 + 3b^2 = 23; a + b = 1


Câu hỏi:

Giải hệ phương trình: \[\left\{ {\begin{array}{*{20}{c}}{5{a^2} + 3{b^2} = 23}\\{a + b = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\].

Trả lời:

\[\left\{ {\begin{array}{*{20}{c}}{5{a^2} + 3{b^2} = 23}\\{a + b = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5{a^2} + 3{{(1 - a)}^2} = 23}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5{a^2} + 3{a^2} - 6a + 3 = 23}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{8{a^2} - 6a - 20 = 0}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{(a - 2)(4a + 5) = 0}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{4}}\\{b = \frac{9}{4}}\end{array}} \right.}\end{array}} \right.\]

Vậy các nghiệm (a; b) của hệ phương trình là: (2; 1) và \[\left( {\frac{{ - 5}}{4};\,\frac{9}{4}} \right)\].

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Cho tam giác ABC đều. Mệnh đề nào sau đây sai?

Xem lời giải »


Câu 6:

Cho lăng trụ đứng ABC.A'B'C' có chiều cao bằng 4, đáy ABC là tam giác cân tại A với AB = AC = 2; \[\widehat {BAC} = 120^\circ \]. Tính bán kính mặt cầu ngoại tiếp lăng trụ trên.

Xem lời giải »


Câu 7:

Phát biểu mệnh đề phủ định của mệnh đề: “13 là số nguyên tố”

Xem lời giải »


Câu 8:

Xét tính đúng sai của các mệnh đề “2020 chia hết cho 3” và phát biểu mệnh đề phủ định của nó.

Xem lời giải »