Gọi M là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ M, tính xác suất để số được chọn có đúng 4 chữ số lẻ và chữ số 0 đứng giữa hai chữ số lẻ (các chữ số liền tr
Câu hỏi:
Gọi M là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ M, tính xác suất để số được chọn có đúng 4 chữ số lẻ và chữ số 0 đứng giữa hai chữ số lẻ (các chữ số liền trước và liền sau của chữ số 0 là các chữ số lẻ)
Trả lời:
Lời giải
Xét các số có 9 chữ số khác nhau
- Có 9 cách chọn chữ số ở vị trí đầu tiên
- Có A89 cách chọn 8 chữ số tiếp theo
Do đó số các số có 9 chữ số khác nhau là: 9.A89=3265920
Xét các số thỏa mãn đề bài:
- Có C45 cách chọn 4 chữ số lẻ
- Đầu tiên ta xếp vị trí cho chữu số 0, do chữ số 0 không thể đứng đầu và cuối nên có 7 cách xếp
- Tiếp theo ta có A24 cách chọn và xếp hai chữ số lẻ đứng hai bên chữ số 0
- Cuối cùng ta có 6! Cách xếp 6 chữ số còn lại vào 6 vị trí còn lại.
Gọi A là biến cố đã cho, khi đó n(A)=C45.7.A24.6!=302400.
Vậy xác suất cần tìm là P(A)=3024003265920=554.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:
{2x−y≤32x+5y≤12x+8
Xem lời giải »
Câu 2:
Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.
Xem lời giải »
Câu 3:
Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?
Xem lời giải »
Câu 4:
Chứng minh phương trình sau đây vô nghiệm:
5sin 2x + sin x + cos x + 6 = 0.
Xem lời giải »
Câu 5:
Chọn ngẫu nhiên một số có 4 chữ số. Gọi P là xác suất để tổng các chữ số của số đó là một số lẻ. Khi đó P bằng
Xem lời giải »