X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Một nhà máy sản xuất các hộp hình trụ kín cả hai đầu có thể tích V cho trước. Mối quan hệ giữa bán kính đáy R và chiều cao h của hình trụ để diện tích toàn phần của hình trụ nhỏ nhất là?


Câu hỏi:

Một nhà máy sản xuất các hộp hình trụ kín cả hai đầu có thể tích V cho trước. Mối quan hệ giữa bán kính đáy R và chiều cao h của hình trụ để diện tích toàn phần của hình trụ nhỏ nhất là?

Trả lời:

Lời giải

Thể tích của khối trụ là \(V = \pi {R^2}h \Rightarrow h = \frac{V}{{\pi {R^2}}}\).

Diện tích toàn phần của hình trụ là

Ta có: \(\pi {R^2} + \frac{V}{R} = \pi {R^2} + \frac{V}{{2R}} + \frac{V}{{2R}} \ge 3\sqrt[3]{{\pi {R^2}\,.\,\frac{V}{{2R}}\,.\,\frac{V}{{2R}}}} = 3\sqrt[3]{{\frac{{\pi {V^2}}}{4}}}\).

Dấu “=” xảy ra khi \(\pi {R^2} = \frac{V}{{2R}} \Leftrightarrow R = \sqrt[3]{{\frac{V}{{2\pi }}}} \Rightarrow h = 2\sqrt[3]{{\frac{V}{{2\pi }}}}\).

Vậy h = 2R.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].

Xem lời giải »


Câu 2:

Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.

Xem lời giải »


Câu 3:

Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].

a) Rút gọn A.

b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.

Xem lời giải »


Câu 4:

Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).

a) Rút gọn biểu thức P.

b) Tìm bậc và hệ số biểu thức B.

c) Tìm giá trị các biến để P £ 0.

Xem lời giải »


Câu 5:

Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1).

Xem lời giải »


Câu 6:

Tìm m để phương trình \(\log _2^2\left( x \right) - {\log _2}\left( {{x^2}} \right) + 3 = m\) có nghiệm x Î [1; 8].

Xem lời giải »


Câu 7:

Tìm tất cả các giá trị của b để hàm số y = x2 + 2(b + 6)x + 4 đồng biến trên khoảng (6; +∞).

Xem lời giải »


Câu 8:

Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 2mx2 + m2x + 2 đạt cực tiểu tại x = 1.

Xem lời giải »