Số các giá trị nguyên của tham số m để hàm số y = x^3 - mx^2 + (m^2 - 2m)x có
Câu hỏi:
Số các giá trị nguyên của tham số m để hàm số y = x3 – mx2 + (m2 – 2m)x có cực tiểu tại x = 0 là
A. cô số;
B. 3;
C. 2;
D. 4.
Trả lời:
Đáp án đúng là: A
Ta có: y' = 3x2 – 2mx + (m2 – 2m)
y' = 0 ⇔ 3x2 – 2mx + (m2 – 2m) = 0 (*)
Cực trị của hàm số ban đầu là nghiệm của phương trình (*):
f(x) = 3x2 – 2mx + (m2 – 2m) = 0
Hàm số đạt cực tiểu tại x = 0 ⇔ f ′(0) > 0
Ta có: f ′(x) = 6x – 2m
f ′(0) = −2m > 0 ⇔ m < 0
Vậy có vô số giá trị m thỏa mãn yêu cầu bài toán.