X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm các số nguyên n sao cho 2n^3 + n^2 + 7n + 1 chia hết cho 2n – 1.


Câu hỏi:

Tìm các số nguyên n sao cho 2n+ n2 + 7n + 1 chia hết cho 2n – 1.

Trả lời:

Lời giải

Ta có 2n3+n2+7n+1

=2n3n2+2n2n+8n4+5

=n2(2n1)+n(2n1)+4(2n1)+5

=(2n1)(n2+n+4)+5

Vì (2n – 1)(n2 + n + 4) 2n – 1

Để 2n+ n2 + 7n + 1 2n – 1

5 2n – 1

2n – 1 Ư(5) = {1; 5; –1; –5}

Suy ra 2n {2; 6; 0; –4}

Hay n {1; 3; 0; –2}

Vậy n {1; 3; 0; –2}.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.

Xem lời giải »


Câu 2:

Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho AM=AC4. Gọi N là trung điểm của đoạn thẳng DC. Tính MB.MN.

Xem lời giải »


Câu 3:

Cho hình vuông ABCD có cạnh bằng 2. Tính T=|AB+AC+AD|.

Xem lời giải »


Câu 4:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.

a) Giả sử ˆB=ˆC=α. Tính ^MON.

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Giả sử BC = 2a. Tính BM . CN.

d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem lời giải »


Câu 5:

Số nào khác tính chất với các số còn lại: 9678, 4572, 5261, 5133, 3527, 6895, 7768.

Xem lời giải »


Câu 6:

Cho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Kẻ DE vuông góc với AB; DF vuông góc với AC. Chứng minh: 

a) ∆DEB = ∆DFC;

b) ∆AED = ∆AFD;

c) AD là tia phân giác của ^BAC.

Xem lời giải »


Câu 7:

Tìm x biết |2x3||3x+2|=0.

Xem lời giải »


Câu 8:

Một khu vườn hình chữ nhật có diện tích 3600 m² chiều rộng 40 m, cửa ra vào của khu vườn rộng 5 m. Người ta muốn làm hàng rào xung quanh vườn bằng 2 tầng dây thép gai. Hỏi cần phải dùng bao nhiêu mét thép gai để làm hàng rào?

Xem lời giải »