X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm các số nguyên tố p và q sao cho 7p + q và pq + 11 cũng là các số nguyên tố


Câu hỏi:

Tìm các số nguyên tố p và q sao cho 7p + q và pq + 11 cũng là các số nguyên tố.

Trả lời:

Vì pq là số nguyên tố mà pq+11 cũng là số nguyên tố

Þ pq chẵn

Giả sử p = 2

Þ 7p + q = 14 + q

Mà 7p + q là số nguyên tố nên q lẻ

Þ q = 3; 3k + 1; 3k + 2

Nếu q = 3 thì 14 + 3 =17 là số nguyên tố

                       2.3 + 11 = 17 là số nguyên tố

Þ Thỏa mãn

Nếu q = 3k + 1 thì 14 + 3k + 1 = 15 + 3k = 3(5 + k) chia hết cho 3.

Þ Không thỏa mãn

Nếu q = 3k + 2  thì 2(3k + 2) + 11 = 2.3k + 15 = 3(2k+5) chia hết cho 3.

Þ Không thỏa mãn

Þ p = 2; q = 3

Giả sử q = 2

Þ p lẻ vì 7p+2 là số nguyên tố lớn hơn 3

Þ p = 3; 3k + 1; 3k + 2

Nếu p = 3 thì 7.3 + 2 = 23 là số nguyên tố

                   2.3 +11 = 17 là số nguyên tố

Þ Thỏa mãn

Nếu p = 3k + 1 thì 7(3 + 1) + 2 = 7.3k + 9 = 3(7k + 3) chia hết cho 3

Þ Không thỏa mãn

Nếu p = 3k + 2 thì 2(3k + 2) + 11 = 2.3k + 15 = 3(2k + 5) chia hết cho 3

Þ Không thỏa mãn

Do đó p = 3; q = 2.

Vậy p = 3; q = 2.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Tìm x, y trên hình vẽ, trong đó AB // EF // GH // CD.

Tìm x, y trên hình vẽ, trong đó AB // EF // GH // CD (ảnh 1)

Xem lời giải »


Câu 6:

Cho tam giác ABC có G là trọng tâm. Chứng minh diện tích tam ABC gấp 3 lần diện tích tam giác AGC.

Xem lời giải »


Câu 7:

Cho tam giác ABC có G là trọng tâm. So sánh diện tích tam giác AGB, BGC và CGA.

Xem lời giải »


Câu 8:

Một mảnh vườn hình chữ nhật có chiều dài 60 m, chiều rộng bằng \[\frac{3}{5}\] chiều dài. Tính chu vi và diện tích mảnh vườn đó.

Xem lời giải »