Tìm giá trị nhỏ nhất của D = x^4 - 2x^3 + 3x^2 - 2x + 1
Câu hỏi:
Tìm giá trị nhỏ nhất của
D = x4 – 2x3 + 3x2 – 2x + 1Trả lời:
Ta có:
D = x4 – 2x3 + 3x2 – 2x + 1
D = (x4 – 2x3 + x2) + (2x2 – 2x + 1)
D = (x2 – x)2 + 2(x2 – x) + 1
D = (x2 – x + 1)2
\[{\rm{D}} = {\left( {{x^2} - x + \frac{1}{4} + \frac{3}{4}} \right)^2}\]
\[{\rm{D}} = {\left[ {{{\left( {x - \frac{1}{2}} \right)}^2} + \frac{3}{4}} \right]^2}\]
Vì \[{\left( {x - \frac{1}{2}} \right)^2} \ge 0;\forall x\]
Nên \[{\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4};\forall x\]
Suy ra \[D \ge \frac{9}{{16}};\forall x\]
Vậy D đạt giá trị nhỏ nhất bẳng \(\frac{9}{{16}}\) khi \[{\rm{x}} = \frac{1}{2}\].