Tìm GTNN của biểu thức: a) A = x^2 − 6x + 11; b) B = x^2 − 20x + 101.
Câu hỏi:
Tìm GTNN của biểu thức:
a) A = x2 − 6x + 11;
b) B = x2 − 20x + 101.
Trả lời:
Lời giải
a) A = x2 − 6x + 11
= x2 − 6x + 9 + 2
= (x − 3)2 + 2 ³ 2
Dấu “=” xảy ra khi và chỉ khi x − 3 = 0 Û x = 3.
Vậy GTNN của A là 2 khi x = 3.
b) B = x2 − 20x + 101.
= x2 − 20x + 100 + 1
= (x − 10)2 + 1 ³ 1
Dấu “=” xảy ra khi và chỉ khi x − 10 = 0 Û x = 10.
Vậy GTNN của B là 1 khi x = 10.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].
Xem lời giải »
Câu 2:
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.
Xem lời giải »
Câu 3:
Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.
Xem lời giải »
Câu 4:
Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).
a) Rút gọn biểu thức P.
b) Tìm bậc và hệ số biểu thức B.
c) Tìm giá trị các biến để P £ 0.
Xem lời giải »
Câu 6:
Khai triển (1 + 2x)10 = a0 + a1x + a2x2 + … + a10x10. Tìm a7.
Xem lời giải »
Câu 7:
Tìm hệ số của x7 trong khai triển biểu thức f (x) = (1 − 2x)10.
Xem lời giải »
Câu 8:
Cho hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\;\left( {b > 0,\;d > 0} \right)\). Chứng tỏ rằng:
a) Nếu \[\frac{a}{b} < \frac{c}{d}\] thì ad < bc.
b) Nếu ad < bc thì \[\frac{a}{b} < \frac{c}{d}\].
Xem lời giải »