Tìm nghiệm của phương trình 2sin2x - 3 căn bậc hai 6 (sin x + cos x) + 8 = 0
Câu hỏi:
Tìm nghiệm của phương trình \(2\sin 2x - 3\sqrt 6 \left| {\sin x + \cos x} \right| + 8 = 0\).
Trả lời:
Đặt \(t = \left| {\sin x + \cos x} \right| = \sqrt 2 \left| {\sin \left( {x + \frac{\pi }{4}} \right)} \right|,\;\left( {0 \le t \le \sqrt 2 } \right)\)
Þ 1 + sin 2x = t2 Þ sin 2x = t2 − 1
Ta có: \(2\left( {{t^2} - 1} \right) - 3\sqrt 6 t + 8 = 0\)
\( \Leftrightarrow 2{t^2} - 3\sqrt 6 t + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = \sqrt 6 \;\left( {KTM} \right)\\t = \frac{{\sqrt 6 }}{2}\;\left( {MT} \right)\end{array} \right.\)
Với \(t = \frac{{\sqrt 6 }}{2} \Rightarrow \left| {\sin \left( {x + \frac{\pi }{4}} \right)} \right| = \frac{{\sqrt 3 }}{2}\)
\[ \Leftrightarrow \left[ \begin{array}{l}\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2}\\\sin \left( {x + \frac{\pi }{4}} \right) = - \frac{{\sqrt 3 }}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\x + \frac{\pi }{4} = \frac{{2\pi }}{3} + k2\pi \\x + \frac{\pi }{4} = - \frac{\pi }{3} + k2\pi \\x + \frac{\pi }{4} = \frac{{4\pi }}{3} + k2\pi \end{array} \right.\]
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k2\pi \\x = \frac{{5\pi }}{{12}} + k2\pi \\x = - \frac{{7\pi }}{{12}} + k2\pi \\x = \frac{{13\pi }}{{12}} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k\pi \\x = \frac{{5\pi }}{{12}} + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\)
Vậy tập nghiệm của phương trình là: \(S = \left\{ {\frac{\pi }{{12}} + k\pi ;\;\frac{{5\pi }}{{12}} + k\pi ,\;\left( {k \in \mathbb{Z}} \right)} \right\}\)