X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm số nguyên dương n sao cho: log 20182019 + 2^2log căn bậc hai của 2018 2019 + 3^2log căn bậc hai của 3/2018 2019 + ... + n^2log căn bậc hai của n/2018 2019 = 10102 . 20212 log 2018 2019


Câu hỏi:

Tìm số nguyên dương n sao cho:

\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)

= 10102 . 20212 log 2018 2019

Trả lời:

Lời giải

\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)

\( = {\log _{2018}}2019 + {2^2}\,.\,2{\log _{2018}}2019 + {3^2}\,.\,3{\log _{2018}}2019 + ... + {n^2}\,.\,n{\log _{2018}}2019\)

= log 2018 2019 + 23 . log 2018 2019 + 33 . log 2018 2019 + … + n3 . log 2018 2019

= (13 + 23 + 33 + … + n3) log 2018 2019

Nên để \({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)

= 10102 . 20212 log 2018 2019 thì:

13 + 23 + 33 + … + n3 = 10102 . 20212

\( \Rightarrow {\left( {\frac{{{n^2} + n}}{2}} \right)^2} = {1010^2}\,.\,{2021^2}\)

\( \Rightarrow \frac{{n\left( {n + 1} \right)}}{2} = 1010\,.\,2021\)

Û n(n + 1) = 2 . 1010 . 2021 = 2020 . 2021

Þ n = 2020

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:

\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]

Xem lời giải »


Câu 2:

Biểu diễn miền nghiệm của của bất phương trình hai ẩn 2x − y ≥ 0.

Xem lời giải »


Câu 3:

Cho phương trình 5sin 2x + sin x + cos x + 6 = 0. Trong các phương trình sau, phương trình nào tương đương với phương trình đã cho?

Xem lời giải »


Câu 4:

Chứng minh phương trình sau đây vô nghiệm:

5sin 2x + sin x + cos x + 6 = 0.

Xem lời giải »


Câu 5:

Cho n là số nguyên dương, tìm n sao cho:

\[{\log _a}2019 + {2^2}{\log _{\sqrt a }}2019 + {3^2}{\log _{\sqrt[3]{a}}}2019 + ... + {n^2}{\log _{\sqrt[n]{a}}}2019 = {1008^2}\,.\,{2017^2}{\log _a}2019\]

Xem lời giải »


Câu 6:

Tập hợp tất cả các giá trị của tham số m để hàm số \(y = \frac{{3x + 5}}{{{{\log }_{2018}}\left( {{x^2} - 2x + {m^2} - 4m + 5} \right)}}\) xác định với mọi x Î ℝ là:

Xem lời giải »


Câu 7:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số \(y = \frac{{4x + 7}}{{{{\log }_{2018}}\left( {{x^2} - 2x + {m^2} - 6m + 10} \right)}}\) xác định với mọi x Î ℝ.

Xem lời giải »


Câu 8:

Chứng minh x2 + y2 ³ 2xy.

Xem lời giải »