X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tìm số tự nhiên nhỏ nhất a sao cho khi chia a cho 4, 5, 6 có số dư lần lượt là 3, 4, 5 và a chia hết cho 13.


Câu hỏi:

Tìm số tự nhiên nhỏ nhất a sao cho khi chia a cho 4, 5, 6 có số dư lần lượt là 3, 4, 5 và a chia hết cho 13.​

Trả lời:

Vì a chia 4 dư 3 nên a – 3 4 a – 3 + 4 4 a + 1 4 (1)

Vì a chia 5 dư 4 nên a – 4 5 a – 4 + 5 5 a + 1 5 (2)

Vì a chia 6 dư 5 nên a – 5 6 a – 5 + 6 6 a + 1 6 (3)

Từ (1);(2);(3) a + 1 BCNN(4; 5; 6) a + 1 BC(4; 5; 6)

Ta có:

4 = 2²

5 = 5

6 = 2 . 3

BCNN(4; 5; 6) = 2² . 3 . 5 = 60

a + 1 BC(4; 5; 6) = B(60) = {0; 60; 120; 180; 240; 300; 360;...}

Vì a * nên a + 1 * a + 1 > 0

a {59; 119; 179; 239; 299; 359; ...}

Vì a 13 mà a nhỏ nhất nên a = 299

Vậy a = 299.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm x nguyên để A = x2+3x+1x+2   có giá trị là số nguyên.

Xem lời giải »


Câu 2:

Tìm x, y > 0 biết x – y = 7 và xy = 60.

Xem lời giải »


Câu 3:

Tìm số tự nhiên n biết 3n + 4n = 5n.

Xem lời giải »


Câu 4:

Tìm x sao cho x4 + 2x3 + 2x2 + x + 3 là số chính phương.

Xem lời giải »


Câu 5:

Tìm số tự nhiên n nhỏ nhất biết khi chia cho 11; 17; 29 thì số dư lần lượt là 6; 12; 24.

Xem lời giải »


Câu 6:

Tìm số tự nhiên x, y để 4x – 3xy – 9y = 0

Xem lời giải »


Câu 7:

Cho x, y biết x – y = 1 và xy = 6. Tính x2 + y2.

Xem lời giải »


Câu 8:

Tính tổng S = 1 – 2 + 3 – 4 +... + 99 – 100.

Xem lời giải »