Tìm tất cả các giá trị của tham số m để hàm số y = -x^3 + 2x^2 + mx đạt cực đại tại x = 1
Câu hỏi:
Tìm tất cả các giá trị của tham số m để hàm số y = -x3 + 2x2 + mx đạt cực đại tại x = 1
A. m = -1
B. m > -1
C. m ≠ -1
D. m < -1
Trả lời:
Đáp án A.
Ta có: y’ = -3x2 + 4x + m.
y’’ = -6x + 4.
+ y’(1) = 0 <=> -3 + 4 + m = 0 <=> m = -1.
+ y’’(1) = -2 < 0 thỏa
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Biết rằng đồ thị hàm số và đường thẳng y = x – 2 cắt nhau tại hai điểm phân biệt A(xA;yA) và B(xB;yB). Tính yA + yB.
Xem lời giải »
Câu 2:
Tung độ giao điểm của đồ thị các hàm số y = x3 – 3x2 + 2, y = -2x + 8 là:
Xem lời giải »
Câu 3:
Có bao nhiêu điểm M thuộc đồ thị hàm số sao cho khoảng cách từ M đến trục tung bằng hai lần khoảng cách từ M đến trục hoành
Xem lời giải »
Câu 4:
Cho hàm số Khẳng định nào sau đây là khẳng định sai?
Xem lời giải »
Câu 5:
x = 2 không phải là điểm cực đại của hàm số nào sau đây?
Xem lời giải »
Câu 6:
Hàm số y = x3/3 – (m + 1)x2 + (2m2 + 1)x + m đạt cực tiểu tại x = 1 khi
Xem lời giải »
Câu 7:
Tập hợp tất cả các giá trị của tham số thực m sao cho hàm số đạt cực đại tại x = 1 là
Xem lời giải »
Câu 8:
Giá trị của m để hàm số f(x) = x3 – 3x2 + 3(m2 – 1)x đạt cực tiểu tại x0 = 2 là:
Xem lời giải »