Tính giá trị biểu thức: (-15 - 25) : (-5) + (-13).3
Câu hỏi:
Tính giá trị biểu thức: (–15 – 25) : (–5) + (–13).3.
Trả lời:
(–15–25) : (–5) + (–13).3
= (–40) : (–5) + –39
= –8 + –39
= –47.
Câu hỏi:
Tính giá trị biểu thức: (–15 – 25) : (–5) + (–13).3.
Trả lời:
(–15–25) : (–5) + (–13).3
= (–40) : (–5) + –39
= –8 + –39
= –47.
Câu 1:
Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).
Câu 2:
Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.
Câu 4:
Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).
Câu 6:
Cho hình thang cân ABCD (AB//CD) điểm E là trung điểm của AB. Gọi I, K, M lần lượt là trung điểm của BC, CD, DA.
a) Tứ giác EIKM là hình gì?
b) Tìm điều kiện của hình thang ABCD để EIKM là hình vuông.
Câu 7:
Cho M(4; 1); (d) là đường thẳng luôn đi qua M và cắt Ox, Oy theo thứ tự tại A(a; 0); B(0; b). Hãy viết phương trình đường thẳng (d) sao cho SOAB = 2.
Câu 8:
Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng 1 nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm)
a) Chứng minh OC ⊥ BD.
b) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn.
c) Chứng minh \(\widehat {CMD} = \widehat {CDA}\).
d) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.