Tính tổng các nghiệm nguyên của bất phương trình: log2 (x^2 + 3) - log2 x + x^2 - 4x + 1
Câu hỏi:
Tính tổng các nghiệm nguyên của bất phương trình:
log2 (x2 + 3) − log2 x + x2 − 4x + 1 ≤ 0
Trả lời:
ĐK: x > 0
log2 (x2 + 3) − log2 x + x2 − 4x + 1 ≤ 0
Û log2 (x2 + 3) + (x2 + 3) ≤ log2 4x + 4x (*)
Xét hàm số f (t) = t + log2 t trên khoảng (0; +∞) có:
\(f'\left( t \right) = 1 + \frac{1}{{t\ln 2}} > 0,\;\forall t \in \left( {0;\; + \infty } \right)\)
Ta thấy hàm số y = f (t) luôn đồng biến trên (0; +∞)
Do đó bất phương trình (*) tương đương: x2 + 3 ≤ 4x
Û x2 − 4x + 3 ≤ 0
Û −1 ≤ x ≤ 3
Kết hợp điều kiện suy ra tập nghiệm nguyên của bất phương trình là S = {1; 2; 3}
Vậy S = 1 + 2 + 3 = 6.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3?
Xem lời giải »
Câu 2:
Có bao nhiêu số tự nhiên gồm 7 chữ số thỏa mãn số đó có 3 số chữ chẵn và số đứng sau lớn hơn số đứng trước?
Xem lời giải »
Câu 3:
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = f (x) = −x2 − 4x + 3 trên đoạn [0; 4].
Xem lời giải »
Câu 4:
Tìm giá trị lớn nhất M của hàm số y = x4 − 2x2 + 3 trên đoạn \(\left[ {0;\;\sqrt 3 } \right]\).
Xem lời giải »
Câu 5:
Tính tổng các nghiệm nguyên của bất phương trình: (x + 3)(x − 1) ≤ 0
Xem lời giải »
Câu 6:
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập {1; 2; 3; 4; 5; 6; 7; 8; 9}. Chọn ngẫu nhiên một số thuộc S, tính xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn.
Xem lời giải »
Câu 7:
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1; 2; 3; 4; 5; 6; 7}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng.
Xem lời giải »
Câu 8:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số chẵn, mỗi số có 5 chữ số khác nhau trong đó có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?
Xem lời giải »