Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - y + 1 = 0. Để
Câu hỏi:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x – y + 1 = 0. Để phép tịnh tiến theo vectơ \[\overrightarrow v \] biến d thành chính nó. Tìm \[\overrightarrow v \].
Trả lời:
Phương trình đường thằng d: 2x – y + 1 = 0
Ta thấy vecto chính phương của d là \[\overrightarrow u = (1;2)\]
Do đó phép tính tiến theo \[\overrightarrow u \] biến d thành chính nó.
Vậy \[\overrightarrow v = (k;2k),\,\,k \in \mathbb{Z}\] thì được phép tịnh tiến theo vectơ \[\overrightarrow v \] biến d thành chính nó.