X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một


Câu hỏi:

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ). Tính diện tích lớn nhất có thể cắt được của phần hình chữ nhật.

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một (ảnh 1)

Trả lời:

Từ một miếng tôn có hình dạng là nửa hình tròn bán kính 1 m, người ta cắt ra một (ảnh 2)

Gọi kích thước của miếng tôn như hình vẽ.

Áp dụng định lý Py-ta-go ta có:

\[{a^2} + {\left( {\frac{b}{2}} \right)^2} = 1 \Leftrightarrow {a^2} = \frac{{4 - {b^2}}}{4} \Leftrightarrow a = \frac{{\sqrt {4 - {b^2}} }}{2}\]

Khi đó diện tích miếng tôn hình chữ nhật là:

\[S = ab = \frac{{b\sqrt {4 - {b^2}} }}{2}\]

Áp dụng bất đẳng thức Cô-si cho hai số ta có:

\[{b^2} + \sqrt {{{\left( {4 - {b^2}} \right)}^2}} \ge 2b\sqrt {4 - {b^2}} \]

\[ \Leftrightarrow b\sqrt {4 - {b^2}} \le \frac{{{b^2} + 4 - {b^2}}}{2} = 2\]

\[ \Rightarrow S = \frac{{b\sqrt {4 - {b^2}} }}{2} \le 1\]

Dấu “=” xảy ra \[b = \sqrt {4 - {b^2}} \Leftrightarrow {b^2} = 4 - {b^2} \Leftrightarrow b = \sqrt 2 \]

Vậy diện tích lớn nhất có thể là 1m2.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh trên đường tròn lượng giác gốc A, cung lượng giác \[\frac{{k2\pi }}{3}\] có các điểm biểu diễn tạo thành tam giác đều.

Xem lời giải »


Câu 2:

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương trình f(x) = 3. 

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ dưới đây. Tìm số nghiệm của phương (ảnh 1)

Xem lời giải »


Câu 3:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem lời giải »


Câu 4:

Tìm chu kì của hàm số \[y = \sin \sqrt x \].

Xem lời giải »


Câu 5:

Phát biểu định lý Talet.

Xem lời giải »


Câu 6:

Hình nào sau đây không có tâm đối xứng?

Xem lời giải »


Câu 7:

Tìm tập xác định của hàm số \[y = \frac{1}{{\sin \,\,2x}}\].

Xem lời giải »


Câu 8:

Tìm điều kiện của hàm số \[y = \frac{{3\sqrt {\sin \,x} }}{{\cos x + 1}}\].

Xem lời giải »