Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau, chia hết cho 5 và chữ số 2 luôn có mặt đúng một lần?
Câu hỏi:
Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau, chia hết cho 5 và chữ số 2 luôn có mặt đúng một lần?
Trả lời:
Lời giải
Gọi số cần tìm là \(\overline {abc{\rm{d}}e} \)
+) TH1: e = 0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
Ba chỗ còn lại có 4 × 3 × 2 = 24 cách
Suy ra có 4 × 24 = 96 cách
+) TH2: e = 5; a = 2
a, e có 1 cách chọn
b có 4 cách chọn
c có 3 cách chọn
d có 2 cách chọn
Suy ra có 4 × 3 × 2 = 24 cách
+) TH3: e = 5; a ≠ 2
e có 1 cách chọn
a có 3 cách chon
Số 2 có 3 cách
Hai số còn lại có 3 × 2 = 6 cách
Suy ra có 3 × 3 × 6 = 54 cách
Vậy có tất cá 96 + 24 + 54 = 174 số thỏa mãn yêu cầu đề bài.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ACD. Chứng minh rằng OE vuông góc với CD.
Xem lời giải »
Câu 2:
Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \[{\rm{A}}M = \frac{{AC}}{4}\]. Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).
Xem lời giải »
Câu 3:
Cho hình vuông ABCD có cạnh bằng 2. Tính \(T = \left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {A{\rm{D}}} } \right|\).
Xem lời giải »
Câu 4:
Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H và K. Lấy E bất kỳ thuộc cung nhỏ HK. Vẽ tiếp tuyến tại E cắt AB, AC ở M, N.
a) Giả sử \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).
b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.
c) Giả sử BC = 2a. Tính BM . CN.
d) MN ở vị trí nào thì tổng BM + CN nhỏ nhất?
Xem lời giải »
Câu 6:
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ.
Số nghiệm thực của phương trình f(2 + f(ex)) = 1 là:
Xem lời giải »
Câu 7:
Cho đường tròn tâm O đường kính AB. Lấy điểm C thuộc đường tròn, với C không trùng A và B. Gọi I là trung điểm của AC. Vẽ tiếp tuyến của đường tròn tâm O tại tiếp điểm C cắt tia OI tại điểm D.
a) Chứng minh OI // BC.
b) Chứng minh DA là tiếp tuyến của đường tròn tâm O.
c) Vẽ CH ⊥ AB (H ∈ AB) và BK ⊥ CD (K ∈ CD). Chứng minh CK2 = HA . HB.
Xem lời giải »
Câu 8:
Chứng minh rằng n7 – n chia hết cho 7, với mọi n là số nguyên.
Xem lời giải »