X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Tứ diện SABC có SA, SB, SC đôi một vuông góc, SA = SB = 2a, SC = 4a. Thể tích


Câu hỏi:

Tứ diện SABC có SA, SB, SC đôi một vuông góc, SA = SB = 2a, SC = 4a. Thể tích khối cầu ngoại tiếp tứ diện SABC là:

A. \(32\pi {a^3}\sqrt 6 \)

B. \(24\pi {a^3}\sqrt 6 \)

C. \(16\pi {a^3}\sqrt 6 \)

D. \(8\pi {a^3}\sqrt 6 \).

Trả lời:

Đáp án đúng là: D

Tứ diện SABC có SA, SB, SC đôi một vuông góc, SA = SB = 2a, SC = 4a. Thể tích  (ảnh 1)

Gọi H là trung điểm của AB và M là trung điểm của SC

Suy ra \[{\rm{S}}M = MC = \frac{1}{2}SC = \frac{{{\rm{4a}}}}{2} = 2{\rm{a}}\]

Vì tam giác SAB vuông cân tại S nên H là tâm đường tròn ngoại tiếp tam giác SAD

Từ H kẻ đường thẳng d vuông góc với mặt phẳng (SAB), từ M kẻ đường thẳng d’ là trung trực của SC

Gọi giao điểm của d và d’ là I suy ra IA = IB = IC = IS

Do đó I là tâm mặt cầu ngoại tiếp tứ diện S.ABC

Vì tam giác SAB vuông tại S nên \(AB = \sqrt {S{A^2} + S{B^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {2{\rm{a}}} \right)}^2}} = 2\sqrt 2 a\)

Vì tam giác SAB vuông tại S nên

\[SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} \right)}^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} - {{\left( {\sqrt 2 a} \right)}^2}} = \sqrt 2 a\]

Vì tam giác SHI vuông tại H nên

\(SI = \sqrt {H{I^2} + S{H^2}} = \sqrt {{{\left( {\frac{{SC}}{2}} \right)}^2} + S{H^2}} = \sqrt {{{\left( {2{\rm{a}}} \right)}^2} + {{\left( {\sqrt 2 a} \right)}^2}} = \sqrt 6 a\)

Suy ra bán kính \[R = \sqrt 6 a\]

Thể tích khối cầu ngoại tiếp tứ diện SABC là:

\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {a\sqrt 6 } \right)^3} = 8\pi {a^3}\sqrt 6 \)

Vậy ta chọn đáp án D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thang  cân, AD = 2AB = 2CD = 2a. Hai mặt phẳng (SAB) và (SAD)  cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt  là trung điểm của SB và CD (tham khảo hình vẽ bên). Tính sin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD  bằng \(\frac{{{a^3}\sqrt 3 }}{4}\).

Cho hình chóp S.ABCD có đáy ABCD là hình thang  cân, AD = 2AB = 2CD = 2a (ảnh 1)

Xem lời giải »


Câu 2:

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:

Xem lời giải »


Câu 3:

Có bao nhiêu giá trị nguyên dương của m để hàm số y = ln(x3 – 3m2x + 72m) xác định trên (0; +∞).

Xem lời giải »


Câu 4:

Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là:

Xem lời giải »


Câu 5:

Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC = 3, góc \(\widehat {BAC} = 30^\circ \). Tính diện tích tam giác ABC.

Xem lời giải »


Câu 6:

Tập xác định của hàm số \(f\left( x \right) = {\left( {9{{\rm{x}}^2} - 25} \right)^{ - 2}} + {\log _2}\left( {2{\rm{x}} + 1} \right)\) là:

Xem lời giải »


Câu 7:

Xác định a, b sao cho log2a + log2b = log2(a + b).

Xem lời giải »


Câu 8:

Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Gọi M, N lần lượt là các điểm trên các cạnh SB, SD sao cho MS = MB, ND = 2NS. Mặt phẳng (CMN) chia khối chóp đã cho thành hai phần, thể tích của phần có thể tích nhỏ hơn bằng:

Xem lời giải »