X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1


Câu hỏi:

Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Gọi M, N lần lượt là các điểm trên các cạnh SB, SD sao cho MS = MB, ND = 2NS. Mặt phẳng (CMN) chia khối chóp đã cho thành hai phần, thể tích của phần có thể tích nhỏ hơn bằng:

A. \(\frac{2}{{25}}\)

B. \(\frac{1}{{12}}\)

C. \(\frac{3}{{25}}\)

D. \(\frac{5}{{48}}\).

Trả lời:

Đáp án đúng là: D

Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1 (ảnh 1)

Gọi P là giao điểm của mp(MNC) với cạnh SA.

Ta có: \[{\rm{x}} = \frac{{SC}}{{SC}} = 1;y = \frac{{SM}}{{SB}} = \frac{1}{2};z = \frac{{SP}}{{SA}};t = \frac{{SN}}{{S{\rm{D}}}} = \frac{1}{3}\]

\(\frac{1}{x} + \frac{1}{z} = \frac{1}{y} + \frac{1}{t} \Leftrightarrow 1 + \frac{1}{z} = 2 + 3 \Leftrightarrow \frac{1}{z} = 4 \Leftrightarrow z = \frac{1}{4}\)

Khi đó:

\({V_{S.CMPN}} = \frac{{xyzt}}{4}\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t}} \right).{V_{S.ABC{\rm{D}}}}\)

\( = \frac{{1.\frac{1}{2}.\frac{1}{4}.\frac{1}{3}}}{4}.\left( {1 + 2 + 4 + 3} \right).1 = \frac{1}{{96}}.10 = \frac{5}{{48}}\)

Vậy ta chọn đáp án D.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thang  cân, AD = 2AB = 2CD = 2a. Hai mặt phẳng (SAB) và (SAD)  cùng vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt  là trung điểm của SB và CD (tham khảo hình vẽ bên). Tính sin góc giữa MN và (SAC), biết thể tích khối chóp S.ABCD  bằng \(\frac{{{a^3}\sqrt 3 }}{4}\).

Cho hình chóp S.ABCD có đáy ABCD là hình thang  cân, AD = 2AB = 2CD = 2a (ảnh 1)

Xem lời giải »


Câu 2:

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:

Xem lời giải »


Câu 3:

Có bao nhiêu giá trị nguyên dương của m để hàm số y = ln(x3 – 3m2x + 72m) xác định trên (0; +∞).

Xem lời giải »


Câu 4:

Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là:

Xem lời giải »


Câu 5:

Tìm tất cả các giá trị của tham số thực m để hàm số y = x3 – 3mx2 – 9m2x nghịch biến trên (0; 1).

Xem lời giải »


Câu 6:

Phương trình log(3x + 1) = 1 có nghiệm là:

Xem lời giải »


Câu 7:

Xét các số thực a; b  thỏa mãn a > b > 1. Tìm giá trị nhỏ nhất Pmin của biểu thức: \(P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\).

Xem lời giải »


Câu 8:

Cho hàm số y = f(x) có f’(x) = (x – 2)(x + 5)(x + 1). Hàm số y = f(x2) đồng biến trên khoảng nào dưới đây?

Xem lời giải »